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Abstract

This thesis develops a formal framework for the specification, complexity analysis and
verification of functional and performance requirements of configurable communica-
tion systems and protocols.

The main objective is demonstrating the applicability of the proposed framework for
the modelling and verification of a realistic system. Design-for-Verification principles
are demonstrated, such as the semantic analysis and decomposition of complex and
intertwined requirements, and the subsequent composition of orthogonal functional
units with manageable complexities. Tock-CSP was used to model those functional
units and their interfaces. Analysis of the underlying state machines of the mod-
elled system resulted in the identification of complexity and scalability issues. Then,
through the development and application of formal complexity analysis techniques
for state machines, modelling optimisations were possible. Complexity issues of the
model-checker were also identified and resolved. Adoption challenges of formal meth-
ods were addressed by the development of suitable specification and verification in-
terfaces. The properties of the configurable system and its ISA-Oriented interface
were verified using various refinement models including the Tau Priority Model. Fi-
nally, the conformance of the ISA-Oriented Specification methodology to abstract
specifications of selected communication protocols was also verified.

This thesis is the first to devise mathematical techniques for expressing and analysing
the state-space complexity of formal models, the first to develop and use waveform
visualisation for the analysis of timing specifications of formal models, and the first
application of the newly released Tau Priority Model.
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CHAPTER 1

Introduction

Communication interfaces are an important aspect of modern embedded hardware
systems. They are becoming highly significant, especially in the context of the emerg-
ing multi-core and many-core platforms. System designers expect Input/Output
(I/O) interfaces both internal and external to the System-on-Chip (SoC) to sup-
port a variety of existing protocols such as UART, SPI, CAN, MII, I2C, I2S, and
USB [4–10] to mention a few. These interfaces are expected to implement a complex
set of functional and timing aspects of the target protocols and thereby reduce the
communication and processing demands on the processor or network-on-chip.

Normal practice would be to use fixed hardware modules to implement each of
these interfaces. An alternative approach would be to use generic interfaces configured
by software. This would allow these interfaces to implement a large and varying set
of functions for each protocol, to be adaptable for any protocol changes over time or
to accommodate new protocols.

Because the communication interface is able to communicate through many pro-
tocols, there is nothing that stops it from dynamically deciding which protocol it uses
at run-time. This will be useful in the context of fault-tolerant systems where one
interface could adapt its functions according to the system it is connected to and/or
the environment it is interacting with.

Hardware designs of the configurable interfaces must meet a complex set of func-
tional and performance requirements while maintaining configurability. The ad-hoc
approach to achieving this goal would be to integrate all the known functionalities of
identified protocols into a single hardware module. This also includes a speculative
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addition of requirements, which might be required for the support of future com-
munication protocols. This happens through the evolution of legacy interfaces with
added functionality over time, which adds some unwanted “historical” complexity
such as the case with the Universal Serial Bus (USB) protocol. This ad-hoc approach
has a significant verification overhead, because all of the functional and performance
requirements are intertwined in a single hardware specification and implementation.

In practice, a more structured and tractable approach would be to separate re-
quirements into functionally-independent configurable hardware blocks. Different
static constructions of these blocks could be made to meet the requirements of the
needed communication protocol and thus constructing the configurable communica-
tion system. This communication system can then be dynamically configured to
customise an I/O interface towards a particular communication function. A complete
communication protocol is thus characterised by the static construction of the con-
figurable hardware blocks coupled with a set of configurations of these blocks. This
careful consideration of the design and verification issues at an early stage of the
design cycle is called Design-for-Verification (DfV).

This DfV methodology provides the most tractable approach for the design of such
a complex system by structuring the seemingly dependent, intertwined and complex
design requirements into relatively simple blocks with specific requirements to be ver-
ified. However, the overall system resulting from the composition of those functional
blocks is still complex and poses verification challenges. In particular, the nature of
the complexity growth of the combined system and its state space as more functional
blocks are introduced. An important issue is how the system complexity growth is
related to the growth of the functional specifications of the system.

In practice, the complexity of the abstract functional specification, as well as the
complexity of the proposed implementation of configurable communication blocks
grows exponentially as additional blocks are added. Traditional simulation-based de-
sign and verification approaches are inherently intractable for verifying and analysing
the expected complexity of the proposed system.

1.1 Background

Gregor von Bochmann [11] in his paper titled “Finite State Description of Communi-
cation Protocols” has suggested a method for specifying communication protocols in
terms of a number of finite-state machines. A concept of “adjoint states” for achiev-
ing synchronisation between communication entities is discussed. Various “protocol
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validation” techniques are suggested. The limitation of the approach is highlighted
and shared by all finite state-based approaches, namely: the state-space explosion
problem. Finally, the approach is demonstrated by the modelling and verification of
the Alternating Bit Protocol (ABP). The shortcomings of this approach are the lack
of any provision for automation through the use of modelling and verification tools.
Such tools would be of great benefit for applying the approach to other problems and
protocols.

In a thesis titled “A Better Way to Design Communication Protocols” Müffke [12]
presented a framework for specifying communication protocols. The framework does
not provide any practical results on how useful the approach might be for the ver-
ification of communication protocols. It does not address real-time aspects. It also
falls short from providing or even describing an automation process (i.e. tools) for the
suggested framework.

Böhm and Melham [13] have presented a refinement approach to designing and
verifying communication protocols. It addresses on-chip protocols with a special
focus on the AMBA Bus architecture by Advanced RISC Machine (ARM) [14]. The
core design step and the following transformations are only relevant to the discussed
protocol and much of the work requires manual proofs. Applying such a framework
to other protocols would require considerable expertise and effort. It also does not
address real-time aspects of protocol specification and verification.

In light of the previous work, the need for a standard and extendible framework for
the modelling and verification of both functional and real-time aspects of communica-
tion protocols is apparent. Such a framework must have solid theoretical foundations.
It must also be accessible to the wider hardware design community. This could be
provided through an abstract specification interface that is similar to the well under-
stood and widely implemented interfaces of Instruction Set Architectures (ISA).

1.2 Problem Statement

A formal specification and verification framework is considered most tractable for
analysing multiple communication interfaces, as discussed earlier. This framework
must be:

• capable of managing the inherent complexity expected of configurable commu-
nication systems and the wide range of possible communication interfaces;
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• scalable to allow for larger units of communications and possibly higher perfor-
mance levels; and

• extendible to enable the support of additional functional specifications and com-
munication interfaces beyond the initially anticipated ones.

This overarching formal design and verification framework for the specification,
implementation and verification of configurable communication systems is the main
challenge addressed in this thesis. This overarching challenge is further broken down
into smaller challenges and objectives as discussed in Section 1.3.

1.3 Research Questions and Objectives

The overall thesis topic is wide and furcating. For this reason, it has been divided
into smaller identifiable research questions and objectives. This section lists those
research questions and objectives.

Objective 1 Refinement-Based Formal Modelling and Verification Framework
What are the techniques and goals of the formal framework?
Refinement-based modelling and verification techniques proved the ideal method-

ology for this framework. The goal of the work presented is to provide a platform
for the specification, implementation and verification of both well-established com-
munication protocols as well as emerging ones. A modelling framework is needed to
allow for accurately modelling communication protocols using the configurable blocks
mentioned in Objective 2.

Simple high-level communication abstractions or properties are defined. These
describe various aspects of a communication system. These abstractions can then
be used as high-level specifications in the verification process of the framework and
its configurations. They can also be used in the verification of other framework-
independent abstract descriptions of the communication protocols in question.

Then, by using refinement techniques, a top-level abstract model of the system
must be refined incrementally by adding implementation details. These increments
are of the form of additional functional blocks.

This evolving modelling system must then be verified across (and proved to be a
refinement of) the top-level abstract communication specification. Furthermore, not
only the overall modelling system is verified across abstract communication models,
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but most importantly (and using the same refinement-based model-checking tech-
niques) specific sets of configurations of this system are proven to be a refinement of
and equivalent to a specific communication protocol.

Objective 2 Analysis of the Requirements of Communication Interfaces
How would the requirements of the configurable communication system be de-

fined? Are there any functional dependencies between those requirements and how
would such dependencies be analysed in a verification framework?

A structured modelling approach was considered most tractable for managing the
inherent complexity of the configurable communication system. This involves analy-
sing the protocols and establishing their functional and performance requirements.
The requirements must then be analysed for functional independence. This should
lead to the specification of functionally independent configurable hardware blocks.

The hierarchical composition of these blocks, suitably configured, provides the
overall functional and timing properties of a communication protocol.

Objective 3 Empirical Analysis: Formal Specification and Modelling
How would the configurable system be modelled? How would each unit be defined

and configured? How would the units be composed into a fully functional and scalable
communication system?

The generic I/O communication system should be modelled in a machine-readable
format. The choice of modelling techniques should be aided by the suitability of
those techniques to the configurable communication system in question, as well as
the availability of associated model-checking tools. The produced models for the
communication system should take into account the need to configure the system to
meet functional and performance requirements of a selected set of communication
protocols.

Due to the expected complexity of the proposed system, the models should be
produced with scalability and automated model-checking in mind.

Objective 4 Hardware Presentation and Visualisation Techniques
What are the desirable modelling and verification user interfaces? What value

would visual abstractions add to the overall verification framework?
Tools and extensions exist for model-checking CSP scripts. Predominantly, they

all use a CSPM front-end. Examples are the ProB model-checker [15], Adelaide Re-
finement Checker (ARC) [16], Process Analysis Toolkit (PAT) [17], but the most
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well known CSP model-checker is the Failures-Divergence Refinement (FDR) model-
checker [18]. However, there is a lack of support for visual hardware modelling ab-
stractions in the formal CSP model-checking tools available; specifically in FDR.

It is important that the developed formal models, as well as their associated real-
time aspects, are presented to hardware engineers using the relevant abstractions
integrated into the hardware design tools. For these reasons, relevant hardware pre-
sentation and visualisation techniques and tools are needed. It would be ideal if such
tools were an integral part of a model-checker.

Objective 5 Complexity Analysis at Various Abstraction Levels
How would the complexity, orthogonality and scalability of the system be analy-

sed? How could this complexity analysis be used to reduce the complexity of the
modelled system? How could the complexity analysis prove the orthogonality of dif-
ferent configurable units from a configuration parameter or data-type?

The success of the framework was hindered by the lack of support of formal analy-
sis and model-checking tools available (namely FDR) for such a complex, furcating
and broad framework. This was especially apparent when objective complexity analy-
sis and management of the exponentially growing system was needed.

The investigation of viable system complexity metrics (e.g. state space, communi-
cation space, time and memory performance) is needed. This investigation involves
the identification, extraction and analysis of those complexity metrics. The practical
support of such an investigation through tool extensions is also needed.

Finally, it would be useful if the complexity and scalability of the FDR tool itself in
handling an exponentially growing complex framework was analysed and subsequently
optimised.

This lack of support for complexity and scalability analysis at many levels (e.g.
modelling framework and the model-checking tools) as the system grows is seen as one
of the main challenges facing the adoption of formal model-checking and verification
techniques in general and CSP in particular.

Objective 6 Empirical Analysis: Formal Verification through Model-Checking
Which verification strategies would be best suited for functional and performance

verification of the configurable system? How would specific configurations of the
system be identified as a communication protocol’s specifications? How would the
conformance of communication protocols’ configurations be verified with respect to
independent communication protocols’ specifications?
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Selected example protocols (UART and SPI [4, 5]) are to be formally specified by
configuring the generic communication system. Using the refinement models of CSP,
proof is to be established to confirm that the configured instances of the hardware are
indeed valid implementations of the respective abstract specifications of the protocols.
This serves as an empirical demonstration of the ability of the framework to be used
in modelling and verification of real-world communication protocols.

Objective 7 Real-time Specification and Verification
How would the real-time aspects of the configurable system be specified? How

would those aspects be used when identifying the configurations of communication
protocols? How would such performance-aware configurations be verified with ab-
stract performance specifications of the communication protocols?

Real-time performance specifications are part of any real-time communication
protocol. The verification of such specifications is essential for any communication
system implementing and communicating using those protocols.

A methodology is needed for expressing high-level timing aspects of communica-
tion protocols in CSP. This methodology should be used for specifying performance
aspects of communication interfaces. Subsequently those performance specifications
should be model-checked with respect to the performance properties of the configured
system.

The Tau Priority Model initially suggested by Ouaknine [19] has been recently
implemented in FDR. Its availability could be essential to the verification of real-
time aspects of communication interfaces.

1.4 Publications

Publication 1 Abu Kharmeh et al. [1] gives a brief progress update of the suggested
platform. The paper was presented at the 10th International Workshop on Automated
Verification of Critical Systems. The paper focuses on the design aspect of a complex
communication interface system. At that stage an initial design of the suggested
system was introduced and individual properties and functional requirements were
investigated.

Publication 2 Abu Kharmeh et al. [2] discusses the full modelling framework. The
paper was presented at the 9th International Conference on Formal Modelling and
Analysis of Timed Systems. The paper couples Property-Oriented Specification tech-
niques with ISA implementation techniques into a new specification methodology
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called ISA-Oriented Specification. Then the modelling of communication protocols
using ISA-Oriented Specification is discussed. Finally, the verification of specific func-
tional and performance aspects of the protocols is discussed.

Publication 3 The complexity and scalability of the modelling techniques, the mod-
elled framework and the model-checking tools are of great interest. In a full technical
paper, Abu Kharmeh et al. [3] discuss such complexity issues. Objective definitions
of State-Space Complexity and State-Space Explosion were provided by relating them
to metrics of the underlying modelled system.

The paper discusses how other metrics could be as useful in analysing hardware
complexity and model-checking such as the communication-space and its complexity.
Complexity equations are defined and subsequently analysed for their asymptotic
behaviour. This gives a clear indication on the scalability of the models. The paper
also discusses the practical implication of producing the desired complexity metrics
using professional model-checking tools. It uncovers inefficiencies in such tools.

Finally, the paper concludes with a detailed case study of the targeted communica-
tion system. It shows how optimisations were achieved by analysing both the detailed
communication complexity formulae, as well as their asymptotic aspect. Such optimi-
sations reduced the complexity of the modelled system, while maintaining the same
functional behaviour.

[1] S. Abu Kharmeh et al., “Formal Anal. of a Programmable Performance-Critical
Processor Communication Interface,” in Proc. 10th AVoCS Int. Workshop, 2010.

[2] S. Abu Kharmeh et al., “A Design-for-Verification Framework for a Configurable
Performance-Critical Communication Interface,” in Proc. 9th Int. Conf. Formal
Modeling and Anal. of Timed Syst. Springer, August 2011, pp. 335–351.

[3] S. Abu Kharmeh et al., “Complexity of Hardware Design and Model-Checking:
An Asymptotic Anal. of State Mach. Metrics,” University of Bristol, Tech. Rep.,
2012.
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1.5 Thesis Structure

Figures 1.1 and 1.2 show a high-level outline of the modelling and evaluation chap-
ters of the thesis. The top half of Figure 1.1 outlines Chapter 5, while the bottom
half outlines Chapter 3. Figure 1.2 outlines Chapter 6 and how the communication
protocols are abstractly defined and used in the verification process. The analysis of
the relationship between the different abstraction levels depicted by the Equivalence
arrows in Figures 1.1 and 1.2 is discussed in Chapter 7.

A brief description of each chapter follows.
Chapter 2 addresses Objective 2 and establishes an independent set of require-

ments to be used in the modelling stage of the communication system.
Chapter 3 presents a brief description of the CSP modelling language, followed by

a brief presentation of the first attempt at modelling the communication system in
Section 3.4, which partially addresses Objectives 3 and 7. Then, Section 3.5 demon-
strates the capabilities of the State Machine Visualiser developed for analysing the
compiled state machines graphically. This partially addresses Objective 4. The chap-
ter concludes with a demonstration of the growing size of the developed models. This
exposes the limitation of the capabilities of graph visualisation and basic analysis and
the need for a higher-level of complexity analysis for the developed models.

Chapter 4 demonstrates a complexity analysis technique for state machine metrics
as discussed in Objective 5. The technique is first demonstrated in Section 4.4 using
simple processes from which the state-space and communication-space complexity
formulae are developed. In practice, an iterative process was necessary for producing
the complexity formulae, which involved the compilation of processes under many
different configurations and the extraction of the metrics for those processes each time.
For this purpose, the efficiency of the model-checker was hindering the success of the
approach and hence required additional investigation. Section 4.5 demonstrates the
investigations into the complexity of the model-checker and discusses the optimisation
process along with the results. Section 4.6 demonstrates an automated process for
developing the complexity formulae for the system models presented in Chapter 3.
Section 4.7 demonstrates the asymptotic analysis of the complexity formulae and the
use of such analysis in the development of more optimal specifications of the system.

Chapter 5 demonstrates the concrete communication system which concludes Ob-
jective 3. This includes the ISA-Oriented Specification methodology for configuring
the communication system, the specification of the individual functional units and
how those are constructed in parallel to build the overall communication system. The
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modelling of the instruction set in Section 5.3.5 addresses configurability and data
communication aspects of the system. It does not aim to model all the details of such
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an instruction set like the memory model. Such details are out of the scope of this
thesis.

Chapter 6 demonstrates two independent specification approaches for communi-
cation protocols: an ISA-Oriented Specification using the instruction set modelled in
Chapter 5 as well as a stand-alone abstract specification of selected communication
protocols. By doing so, the chapter partially addresses Objective 6. The two sets of
specifications will be instrumental in showcasing the value of the formal framework
in Chapter 7.

In Chapter 7, the strength of the overall formal framework is demonstrated when
a series of formal properties are proven. Section 7.3 performs basic timing and func-
tional assertions of the communication system. Sections 7.4 and 7.5 check the validity
of the ISA-Oriented Specifications and Abstract Specifications of the protocols sepa-
rately. Section 7.6 and Section 7.7 demonstrate how individual protocol specifications
could be used to construct a complex communication channel and how that channel
could be functionally verified. Section 7.8 discusses how specific performance as-
sertions could be carried out. Section 7.8 also discusses the Tock-CSP Waveform
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Generator which concludes Objective 4. Finally, Section 7.9 demonstrates how the
configured communication system conforms to the stand-alone specifications of se-
lected protocols presented in Chapter 6. Through the various levels of functional and
performance evaluation, Chapter 7 concludes Objective 6.

Finally, Chapter 8 summarises the thesis and presents the contributions and pos-
sible future work.
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CHAPTER 2

Requirements Analysis

2.1 Motivation and Chapter Structure

This chapter addresses Objective 2: the analysis of the requirements of communi-
cation interfaces. First, the background of this chapter is presented in Section 2.2,
then Section 2.3 presents a brief review for a number of communication protocols.
This review is essential for constructing a set of requirements that are shared among
communication protocols as discussed in Section 2.4. Next, the analysis of the func-
tional independence of those requirements is discussed in Section 2.5. Once a set of
orthogonal functional requirements is established, it can be used as a blueprint for the
building blocks of the configurable communication system, as discussed in Section 2.6.

2.2 Background

While reasoning about complex communication systems and the need for a struc-
tural approach for specifying and modelling communication protocols, one cannot
overlook the bigger picture of how complex systems in general are constructed and
organised. Simon [20] discusses the organisation of complex systems from a relatively
non-technical point of view. The work provides great insight on the commonalities
between a very broad class of complex systems. It stresses the fact that most com-
plex systems are constructed in a hierarchical manner. It also discusses briefly the
mathematical background for this hierarchical construction. Most importantly, it dis-
cusses the “near-decomposability” theory which implies that one “can build a theory
of the system at the level of dynamics that is observable, in ignorance of the detailed
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structure of dynamics at the next level down, and ignore the very slow interactions at
the next level up”. Not only does this statement give a historical background to the
refinement-based modelling techniques used today, but it also provides real evidence
with examples from many complex systems that the best approach to structuring
such systems is through hierarchical decomposition. Simon [20] also uses program-
ming alphabets, languages and programs to illustrate these hierarchical decomposition
concepts.

With respect to complex communication protocols, the most evident work to
the standardisation and decomposition of protocols is the initiative of the Interna-
tional Organization for Standardization (ISO) called the Open Systems Interconnec-
tion (OSI) reference model [21]. This reference model provides a general hierarchical
decomposition of any communication system for protocols designers on which many
communication protocols standards are based. It is an abstract model with little
consideration to hardware implementation details. Rather, it emphasises the separa-
tion of functional aspects with respect to their usage by software subsystems, such as
applications and communication networks with each usage group having a dedicated
functional layer. Clark and Tennenhouse [22] present architectural considerations
relevant to the ISO model. The most important and relevant observations made by
Clark and Tennenhouse [22] are:

• data manipulation costs more than transfer control operations;

• application data units are the natural pipelining units and they correspond to
what applications want, not to the network technology of the day, which can
and will change in the near future; and

• Integrated Layer Processing (ILP) allows applications to process their data
incrementally and permits efficient implementation of data manipulations on
RISC processors.

Though it is evident that the work performed by Clark and Tennenhouse [22]
is at a rather higher level from the target level of abstraction in this thesis, it still
provides interesting transferable insights. In particular, the performance implications
from data processing functions, as opposed to only data transfer and control func-
tions. It also presents interesting engineering approaches to integrating more than one
functional aspect in the same implementation layer. While this might be interesting
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from a performance point of view, it has to be performed with the utmost care, be-
cause it has implications on the principle of functional independence and hierarchical
decomposition.

Finally, and probably most relevantly, the study by Furber and Spars [23, Chap-
ter 2] is reviewed. Furber and Spars first describe a number of asynchronous commu-
nication protocols. They then describe the basic functional aspects of those protocols
and a possible “solution space” of the different configurations of those protocols. “This
solution space can be expressed as the Cartesian product of a number of options in-
cluding:

{2-phase, 4-phase} × {bundled-data, dual-rail, 1-of-n, . . .} × {push, pull}”

This study gives a good, but rather limited theoretical background on classifying
communication protocols in terms of individual functional aspects and configurations.
The total possible communication configurations as a product of the individual func-
tional aspects of those protocols is also discussed. It does not, however, extend the
scope of the study beyond the few legacy asynchronous communication protocols.
Moreover, it does not address more sophisticated protocol requirements, where a
potential overlap of the basic requirements might happen in which case the separa-
tion of the functional requirements into functionally independent configuration is not
straightforward. Such issues will be discussed in this chapter. In addition, a num-
ber of recent communication protocols that are still being used in state-of-the-art
hardware designs are analysed and the overall “solution space” is discussed.

2.3 Review of Communication Protocols Features

As part of the development of this framework, a number of communication protocols
have been reviewed. This was performed by reviewing the relevant standards [4–
9, 24]. In addition, implementation details were also found in application notes such
as [25–27]. The review was aimed at establishing high-level functional and perfor-
mance requirements of those protocols. A brief discussion of a selected set of those
protocols follows.

• Universal Asynchronous Receiver/Transmitter (UART) [4] is a protocol that
any configurable interface is expected to support. It is an asynchronous protocol
and there is no external clock exchanged between devices. The implementing
interface is expected to have its own time management, including an internal
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clock which is used to sample the data. The protocol is serial in nature and
ideally the interface must be able to collect a number of the incoming data bits
and present them to the host as one unit possibly dropping control information,
such as start-, stop- and parity-bit.

• Serial Peripheral Interface (SPI) [5] is a de facto standard protocol that is used
between Application Specific Integrated Circuits (ASIC) and controller systems.
Application notes such as [5] are usually a good source of information in the
absence of an official standard. It is a four wire synchronous protocol with
a clock signal driven by the master device and received by all slave devices
attached to the bus. Two serial data signals are also exchanged. This allows
devices to operate in full-duplex mode where a device can send and receive data
at the same time. The 4th exchanged signal is a chip select driven by the master.
Since SPI is a de facto standard, there are no fixed data-rates that devices are
expected to support. The various implementations reviewed supported data
rates between 1 Mbps and 100 Mbps for a single channel SPI interface (i.e. 1
data signal in each direction).

• Media Independent Interface (MII) [7] is an interface used to communicate with
Ethernet physical bus transceiver chips. Clocking rates vary between 10 Mbps
in earlier versions of the protocol to 10 Gbps in most recent versions. 100 Mbps
and 1 Gbps are the most widespread clocking rates these days. The interface is
divided into three sub-interfaces: transmitter, receiver and management. The
transmitter and receiver interfaces are similar in the fact that they both have
four bit data buses along with three control signals: Clock, Data Valid/Enable
and Error. The management interface is a two wire serial interface: clock
and data. The clocking signals can be either driven by the controller or by
the transceiver chip. The controller is expected to be able to serialise and
de-serialise multiple data items, while dropping control information, such as
the data preamble. Special care is needed to allow for serialisation and de-
serialisation of data items with variable widths, especially at the end of data
packets. Framing signals (Data Valid/Enable) are exchanged between devices
which specify when the data bus carries valid data. In a receiver, the interface
is expected to use such external signals to enable/disable sampling the data bus
and the transmitter interface is expected to auto generate these signals.

• Controller Area Networks (CAN) [6] is a protocol standard used for imple-
menting a network of communicating embedded controllers in the automotive
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industry. The CAN bus is a two wire bus that allows for many controllers
to communicate without the need of a bus arbitration or coordination device.
When analysing the protocol in terms of low-level physical interface require-
ments, the synchronisation mechanism was identified as a challenging aspect
of the specification. This is because it requires high resolution sampling and
processing of the data bus by the controller. The synchronisation process di-
vides each CAN bit into a number of time quanta. The maximum number of
time quanta per bit is 25. Considering a bit-rate of 1 Mbps, then the possible
sampling rate of the interface is 25 Mbps. Hartwich and Bassemir [28] discuss
the synchronisation process in more detail. At such a high sample rate, a seri-
alising buffer is expected to decouple the physical interface from the controller
pipeline. The hard synchronisation requires devices on the bus to check for a
specific transition on the data line and sample subsequent data values relative
to that transition.

• Inter-Integrated Circuit (I2C) [8] is a two wire protocol normally used to convey
control information between a number of chips in an embedded system. Control
information can range from volume control in an audio chip to reading physical
interface settings such as port width, bandwidth, and protocol version in other
controllers. It is a master/slave protocol: a master drives the clock signal and
has main control over communications on the bus. Each device in the system
can act as either a master or a slave at any particular point in time. The
protocol allows for different clock speeds of the masters in the system through
a clock synchronisation mechanism. It also allows for the coexistence of more
than one master on the bus. There can only be one master in the system at any
point in time. Masters use the bus arbitration mechanisms to claim ownership
of the bus. Devices switch from master to slave when they lose the arbitration
in case they are addressed by the winning master. The two wires are the clock
line (SCL) and the data line (SDA). Communications along the SDA line is
bidirectional. Information on the SCL flows unidirectionally in a single master
set-up. However, in a multi-master configuration the SCL is also bidirectional.
Both the SCL and SDA signals are pulled high by default when the bus is idle.
Finally, clocking rates vary between 100 Kbps to 3.4 Mbps.

• Inter-Integrated Circuit Sound (I2S) [9] is a serial communication protocol in-
tended for the communication of audio data between controllers and audio de-
vices. The controller can operate in master mode where it generates the clock,
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or as a slave where it receives the clock from an external source (the audio de-
vice or an independent clock management hardware). The interface comprises
of two serial data lines: digital-to-analog and analog-to-digital and two corre-
sponding framing signals for left/right channel selection. A clock signal is also
exchanged. When it is necessary to support higher data rates, it becomes clear
that the controller needs additional hardware to support automatic clocking
of the audio data using the externally provided clock. In such a scenario, a
serialising buffer would also be necessary to decouple the relatively slow con-
troller pipeline from the faster audio interface. In addition, there is a two wire
management interface similar to the I2C protocol discussed earlier.

• Handshake Protocols [23, Chapter 2] are a class of asynchronous communication
protocols. They are generally implemented using handshake signals such as
Request and Acknowledge. The handshake signals can be made to return-to-
zero before each transaction, in which case the protocol is called 4-phase. If the
return-to-zero mechanism is not enforced, the protocol is called 2-phase. They
include:

– Bundled-Data Protocols where two handshake signals are exchanged along
with the data signals; and

– Dual-Rail Protocols where only the Acknowledge signal is present while
the request signal is encoded using the data signals.

Other configurations of this set of protocols exist. Refer to [23] for more details.

2.4 Functional Requirements

From the review in Section 2.3, the following features are common in many protocols:

1. Raw: A most basic form of communication is observed which is not subject to
any timing or data conditions. Lower levels of timing or data control are dis-
abled. This form communication is asynchronous and happens instantaneously
on the most abstract communication unit (1 bit port or wire). This definition is
relative to the individual communication unit and other forms of control might
be imposed at higher levels of abstraction such as ISA.
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2. Clocking: A clocking mechanism to satisfy specific timing requirements of pro-
tocols is needed. It should be possible for this timing control to be based on
an internally generated clock or an externally exchanged one. It is also evident
that this clocking control mechanism should be able to interact directly and
closely with the rest of the communication interface.

3. Time Dependent I/O: When implementing a real time function, it should be
possible to perform specific communication operations at a specific time using
a reference clock. The clock source might be the internal system clock, any
multiplier or divider of that clock, or possibly an external clock source.

4. Data Dependent I/O: The ability of an external event to automatically trigger
internal actions or responses in the interface. This action or response could be
configured in advance but should subsequently finish automatically.

5. Direction: The ability to switch the function of an interface between input and
output.

6. Buffering: This is useful for decoupling the physical interface from any further
processing. This is particularly useful when the interface has higher clocking
speeds than further processing units in which case it should be possible to enable
the buffer to be controlled by external clocking mechanisms. This arrangement
can only work when information flows into the system in bursts. The size of
those bursts would control the amount of buffering that is needed while the
average sustained data rate would control the ultimate speed of the overall
system and subsequently the speed of any further processing performed on the
data.

7. Serialisation: It is usually useful to have special hardware which enables the
support of data items of various sizes. This is particularly the case when sections
of the hardware pipeline are designed to manage data of sizes that are larger
than the actual physical interface. This is evident in many of the reviewed
protocols. In such cases, higher software abstractions would have the ability to
process, store and deliver data items that are typically larger than the size of
the physical interface. The serialisation hardware is then able to (de-)serialise
the data from/to the physical interface. There are also cases where the physical
hardware interface is larger than higher software abstractions and in such cases
the serialisation process would also provide a useful conversion mechanism.
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8. Hierarchy: In many protocols, the system is organised in a way to allow for
devices to have higher control over operations and transactions performed on
the bus. This becomes more important in the context of shared buses where
more than two devices can be actively participating in a transaction. In some
of the protocols above, a device with higher control priority is called Master.
This device has higher priority of control over the communication interface
compared to a Slave device. It is worth considering the case where devices have
symmetric control over the communication interface. In such case, any device
sharing the bus can start a communication transfer at any point in time. A
more complex network of devices, which includes multiple levels of hierarchy
could be considered.

9. Handshake: Some protocols have signals to indicate the validity of the ex-
changed data. These signals can either be accompanied with a clock to establish
the timing of the exchanged signal and possibly enable multiple data transfers
for each request. Other synchronisation mechanisms include the presence of an
Acknowledge signal in the opposite direction.

10. Pull-up/down: This is where protocols expect the bus to have a default logical
state when not driven by any attached device.

11. Invert: This is a low-level hardware requirement where a protocol expects its
signals to be active for logical low values instead of logical high. For that reason,
it would be useful if the interface would automatically address this requirement
and provide a configurable option to enable this functionality.

12. Width: In some protocols (e.g. the MII protocol) a number of physical signals
are grouped together to act as one unit. This is normally the case with the data
bus. Interesting scenarios occur when the size of a single unit of transfer from
another level of abstraction (Instruction Set, for example) is larger or smaller
than the size of the underlying hardware unit. Another interesting situation is
when all this is combined with some sort of buffering mechanism.

13. Return-to-Zero (RZ): Clocking and handshake mechanisms can use only the
rising edge of a control signal to trigger data transfers and hence the control
signal must Return-to-Zero after each transfer. An alternative mechanism would
allow for both the rising and the falling edges of the control signal to be used for
triggering data transfers. In such case the term becomes Non-Return-to-Zero
(NRZ).
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May [Chapter 15, 29] demonstrates an ad-hoc implementation of a configurable
communication system addressing some of the requirements outlined above. There
is no evidence of the use of formal methods by May in the design and verification of
the system discussed in [29]. The framework demonstrated in this thesis provides a
good proof-of-concept of a formal framework that could be used in the future for the
design of complex configurable communication systems similar to [29].

2.5 Semantic Analysis of Requirements

The aim of this section is to analyse the requirements in terms of their orthogonality
and group dependent design requirements together. This is achieved through the
analysis of the dependencies between the various requirements. Subsequently, an
orthogonal set of requirements is constructed. This orthogonal set will form the basis
for configurable communication units, which could be used to construct a configurable
communication system. Grouping interleaved and dependent requirements in a single
functional unit is key to the success of orthogonal hardware design.

The proposed framework uses an ISA interface for configuring the associated func-
tional units and establishing the communication stream. In such an ISA-based com-
munication system and when additional timing and performance requirements are
not taken into account, most of the requirements discussed in Section 2.4 can be
addressed at a higher level of abstraction using ISA specifications and without any
additional hardware units. However, the need for such additional hardware support
becomes apparent when specific performance requirements are imposed.

2.5.1 Naming Conventions

Requirement 1 in Section 2.4 specifies the need for an asynchronous and uncondi-
tional form of communication from/to the physical interface. This has originally
been thought of as a stand-alone functional requirement that would be modelled us-
ing a separate functional unit. However, after practical considerations, it turns out to
be a naming convention for a specific default configuration of all the functional units
in the system. For example, the functional unit handling timed data I/O would be
inactive by default, hence all communications would be instantaneous and could be
called raw.
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2.5.2 Direction

The direction of the data transfers (Input or Output) in a communication interface
is not seen as an independent requirement that could be modelled in an independent
hardware module, but instead an aspect or configuration option that some modules
use. Some requirements depend on this aspect such as Data Dependent I/O, Seri-
alisation and Inversion. Other requirements are independent of this aspect such as
clocking, timing and handshake signals.

2.5.3 Synchronous, Asynchronous and Hierarchical Commu-
nication

A few functional requirements that were initially considered orthogonal are the clock-
ing mechanism used in synchronous communication protocols, the handshake signals
used in asynchronous communication protocols and hierarchy. However, when those
requirements were considered for orthogonality in the context of real-time systems,
the situation became tricky.

2.5.3.1 Synchronisation and Timing Control

Real-time systems are inherently synchronous with system events, actions and re-
sponses all synchronising to a global clock which runs freely and infinitely. It is
usually useful for an internal system clock or any division of that clock to be made
available externally, as a means of synchronisation with another system. Sub-systems
usually use different clocks in their corresponding clock-domains. A signal that crosses
from one clock domain to another clock domain has to pass through a synchronisation
boundary. An abstract look at the relative synchronicity of signals would interpret
any signal on one side of a synchronisation boundary as being asynchronous to the
other side and not bound by its clock. This of course includes the clock itself, in the
case of synchronous communication protocols considered earlier. The system clock is
typically regular with fixed timing specifications and runs infinitely. Real-time sys-
tems depend on this property in order to function in a timely manner. Asynchronous
systems, on the other hand, are not bound by any clock signal and exchange data
using some arrangement of control signals (request and acknowledge). The advantage
of asynchronous communication protocols is their potential ability to outperform syn-
chronous systems, because they can in theory run as fast as the physical hardware
and electrical signals allow them to.
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In some synchronous systems, the notion of clock-stretching is used to allow for
extending the duration of clock cycles. This is useful for allowing either the sender
or the receiver extra time for processing the communicated data. This technique is
clearly used in the I2C protocol mentioned earlier. When clock-stretching is employed
by the receiver, the technique can be conceptually interpreted as some form of positive
acknowledge to the reception of the data item. Asynchronous handshake protocols
use a standalone acknowledge signal for this purpose. On the other hand, if clock
stretching is employed by the sender to delay the next data transmission, it makes the
clock signal equivalent to the physical request signal used in asynchronous handshake
protocols. It is also possible for both the sender and receiver to use clock stretching,
where the sender delays one edge of the clock (let us say the positive edge) and the
receiver delays the negative edge. This way, a full handshake protocol is achieved.
Hence, a stretched clock signal could be interpreted as either request, acknowledge or
potentially both. In any case, the stretched clock signal becomes no longer regular
and infinite.

Another way to look at the relation between synchronous and asynchronous com-
munications is to assume an asynchronous protocol is configured to use only one
handshake signal (say request) to specify the availability of new data items on a bus.
If data transfers are regular and unacknowledged then this signal can simply be in-
terpreted as the clock signal in any synchronous communication protocol (e.g. the
MII protocol mentioned earlier). The fastest possible frequency of this request signal
in a real-time system is equivalent to the internal clock of the system, assuming a
new data item is available with each clock cycle. The same arguments can be used
on the existence of an acknowledge signal which could be regular and equivalent to a
clock going in the opposite direction with maximum frequency equivalent to the clock
speed of the sub-system generating this acknowledge signal.

Higher-Levels of Clocking and Synchronisation could be envisaged through
the presence of other data enveloping signals, as is the case with data valid signals for
the MII protocol or the chip select signals in many other protocols such as SPI. Those
signals could be interpreted as being higher-level synchronisation/handshake signals
similar to the request or clock signals discussed earlier. Those signals are typically
valid for a whole transaction (say a packet of Ethernet data) rather than only one
data transfer which is the case in lower level clock and request signals.

Another interesting scenario is encountered in the I2S communication protocol,
where the channel-select signal can also be interpreted as being a higher-level syn-
chronisation/handshake signal. This signal is particularly interesting because it splits
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the flowing data bits into the left and right channel by assigning each channel a dif-
ferent logical value (either 0 or 1). This is similar to a higher-order Double Data Rate
(DDR) technique used in the implementation of Random Access Memory (RAM).

However, higher levels of hierarchy are discussed here purely for philosophical rea-
sons. This is because the signals involved typically have low bandwidth and additional
hardware considerations for such signals usually have diminishing returns.

2.5.3.2 Transaction Initiation Hierarchy

Though it might not always be the case, control of the communication interface
hierarchy is usually accomplished by controlling the synchronicity signals (i.e. the
clock or the handshake signals).

The term Master/Slave is used in a number of protocols to indicate hierarchy.
However, the terminology of Initiator, Responder and Symmetric shall be used instead
for the following reasons:

• Master/Slave can indicate a number of other control mechanisms in addition to
using the synchronisation signals to establish hierarchy;

• the lack of terminology to indicate Symmetric access to the bus; and

• the term Master/Slave is deemed unethical for indicating hierarchy.

As the names imply, Initiator is the active device that is capable of initiating
a communication transaction and Responder is the passive device that is unable to
initiate a transaction, but responds to transactions when one is initiated. Finally, a
Symmetric device can both initiate transactions and respond to transactions if they
are initiated.

Because transaction initiation is tightly coupled with synchronicity signals, this
functionality is expected to either be a specific configuration of any timing unit, or
possibly a subunit within a synchronicity functional unit.

2.5.4 Buffering, Serialisation and Shifting

Buffering is meant to handle situations where the two parties involved in the commu-
nication have different throughput capabilities. By providing an intermediate buffer
to hold communicated data until the destination is able to process this data, the
difference in capabilities of both sides can be managed and its effect on slowing down
the interface is minimised.
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Serialisation transforms the data from different sizes of interfaces. This is typically
used to transform data from the internal system data units (typically 8, 16, 32 or 64
data bits) to the physical interface size, which is typically of smaller size (1 to 4 in
most of the reviewed protocols above).

Though buffering and serialisation seem at first to be two orthogonal require-
ments, closer examination reveals the semantic dependency of serialisation on the
existence of a buffer. For this reason it would not be possible to reason about any
form of serialisation mechanism without the existence of some sort of buffer to hold
the intermediate data value during the serialisation process. Hence, serialisation and
buffering requirements are best modelled as a single entity.

2.5.5 Compositional Semantics

In this section the meaning of various possible compositions of the requirements is
discussed. An exhaustive analysis of each possible arrangement of all the possible
requirements is impossible in the scope of this thesis, as will be discussed later.

Let us consider the theoretical solution space resulting from all possible composi-
tions of all functional units into a single configurable system: is this a permutations
or combinations problem?

At first glance, one might expect that the order in which the functional require-
ments are composed together is irrelevant and hence assuming a combinations prob-
lem. However, some of the requirements operate on larger data structures such as the
serialisation, while others only operate at lower levels next to the physical interface.
Some requirements have no effect on the data values at all, such as Time Dependent
I/O. State-of-the-art communication fabrics are typically positioned between an ISA

controller and the actual hardware pins. This means that requirements operating on
wider data structures would typically be positioned near the ISA controller, while the
ones that operate on data values the width of the physical interface would operate
nearer to that interface. In light of this, one can deduce that the order in which the
functional units are arranged is important, resulting in a permutations problem.

However, because there are at least 13 requirements (some of which might be
merged into a single functional unit as discussed in Sections 2.5.4 and 2.5.3), there
are 4.8×108 possible permutations. As mentioned earlier, considering all the possible
permutations of those functions is not practical. A structural and functional analy-
sis of those requirements guided with formal analysis would help decide the exact
structure of the communication system.

25



Once a suitable permutation of the functional requirements has been selected, the
task of composing those requirements into a single comprehensible system becomes
a necessity. Most requirements are independent of real-time or data values such
as pull-up and invert functions. Hence, one could use both invert and pull-up in
a single I/O operation, because neither functions conflict with the other function.
However, this is not the case when dealing with Data Dependent I/O composed with
Time Dependent I/O: is it possible to perform an I/O operation which depends on
both the value of the data, as well as the real-time that the operation takes place?
One approach is to provide an additional composability function to deal with this
dilemma. This composability function would allow for the logical composition of two
functional requirements or units. Using this composability function one could achieve
Data Dependent I/O AND Time Dependent I/O on the same operation: the input
operation will not take place until a specific time has passed and also the value of the
data matches the value specified by the operation. It should be possible to use any
of AND, OR or XOR as the composability function.

As more configurable options are provided, the chance of equivalent configurations
increases. For example, a timed AND buffered operation could be used to achieve
a variable size input (i.e. configurable size buffer) if the timer clock source is the
same as the buffering clock. Another interesting composability scenario arises from
the I2C multi-master configuration, where the system could be configured to do both
Time Dependent I/O OR Data Dependent I/O at the same time to watch for loss of
arbitration.

A suitable encoding interface that supports composability might be useful for extra
performance advantage. This interface would possibly merge multiple configuration
operations into one: the configuration of each functional unit as well as configuring
the composability function of those units.

Finally, a mechanism for ensuring all blocks involved in a compositional transac-
tion have finished would be necessary to ensure all scheduled operations have finished
and the configuration of subsequent operations may commence.

2.6 Orthogonal Functional Blocks

This section summarises the requirements in light of the above discussion and es-
tablishes an orthogonal set of functional units. The units themselves should be con-
structed in a hierarchical manner whereby multiple dependent functional requirements
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are used to construct smaller hardware units. These functionally orthogonal units are
then used to construct the top-level functional unit or system.

2.6.1 Data Dependent Control (DDC)

This control unit handles requests that depend on the value of the data in the I/O
operation. The unit is positioned as close to the physical interface as possible to
minimise the amount of traffic that would otherwise be involved when polling the
interface for data. Its main concern is to trigger an event, once a specific value has
been observed on the physical interface.

2.6.2 Synchronisation and Timing Control (STC)

This unit groups all the requirements that are concerned with synchronisation between
two systems. This includes Timed I/O, Clocked I/O and Asynchronous I/O. It also
contains configuration options for specifying transaction initiation hierarchy and other
signal-specific options such as Return-to-Zero. This unit is attached to and has direct
control of the physical interface. It also has a direct control interface from the ISA

controller.
As discussed in Section 2.5, clocking, timing and hierarchical control are all inter-

leaved requirements and hence are all addressed by the STC unit. A list of config-
urable options and signals follows.

• Trigger Source is a configurable option, which specifies the source of the
signal used to increment the internal time counter, which subsequently initiates
communication events on other physical interface signals. Typically, the source
is regular and triggers infinitely which could be thought of as a reference clock
(useful for implementing real-time functions). On the other hand, the trigger
could come from an external source to the system, in which case it would be most
relevant to the communication interface operations and might not be regular,
depending on the I/O activity occurring on the interface. An activity could be
controlled by external or internal data transfers, or both, as in the case of a
handshake protocol, where the request signal initiating the next data transfer
could not commence until an acknowledgement of the previous transfer has
occurred and the next data item is ready for transfer.

• Clock/Request or Higher-Level Framing/Acknowledge configurable op-
tions could be used to enable the system to perform clocked or asynchronous
communications.
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• Attached Data Signals configures a set of data signals to be attached to this
STC unit.

• Return-to-Zero configuration specifies whether the special clocking signals
activate data transfer on one edge only (RZ) or on both edges (NRZ). The NRZ
configuration could be useful in some protocols such as the DDR clocking signal
and the I2S framing signal.

• Initiation is a configurable option in the STC unit, which specifies whether
the unit has Initiator, Responder or Symmetric access to the physical interface.

Finally, the direction of the control signals should be orthogonal to the direction
of the attached data signals. For example, a clock could be input or output. Such a
clock could be used to input or output data similar to the Pull/Push configuration
option discussed in [23].

2.6.3 Shifting and Buffering Control (SBC)

As discussed earlier is Section 2.5.4, serialisation and buffering are best modelled in
a single functional unit. This unit would have a control interface with the STC unit
to enable the timely clocking of data in/out of the buffer. The buffer is concerned
with holding data items. It would be useful to have other items buffered along with
the data such as their input/output times and other control information.

Possible configurations to be implemented in the SBC unit follow.

• Direction: in which direction does the data flow? To or from the ISA interface.

• Size: what is the size of the buffer? A useful mechanism when it is necessary to
read data values from the buffer that are smaller than the buffer full capacity.
This affects the size of the ISA read/write interface.

• Attachment: which physical entity or entities is the unit attached to? Could be
a single bit or multiple bits.

It should be possible for this unit to respond to an End Transmission command
where the built-in buffer is either read by the ISA interface when in input mode, or
flushed when the unit is in output mode.
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2.7 Summary

This chapter reviewed a representative set of communication protocols to establish
the common requirements and trends in state-of-the-art communication systems. In
conjunction with previous work for classifying communication protocols [23] an analy-
sis of the identified requirements was performed to establish their orthogonality. This
provided the blueprint for the functional units to be used for building up the config-
urable communication system. This generic configurable system was later used for the
modelling and verification of full communication protocols. This will form the bench-
mark for the modelling, analysis and verification framework discussed throughout the
following chapters.

Many essential functional requirements would be captured by the functional units
discussed earlier. The remaining requirements are either:

• functionally distributed over many units such as the direction of communi-
cation and the width of the physical channel;

• merely a naming convention and do not require additional hardware support
such as the Raw I/O configuration, which is the default configuration for the
functional units; or

• trivial such as invert and pull-up/down and can simply be implemented using
an orthogonal functional unit in the communication pipeline.

The functionality of the overall hardware system grows exponentially with the
addition of more functional blocks, while the design and verification efforts grow lin-
early. For example, consider if only two functional units were implemented in our
system (STC and SBC), and each unit had only two configurations (for STC: Timed
and Untimed, and for SBC: Buffered and Unbuffered). The overall functionality
would be the Cartesian product of the functionality of the two units: (Timed, Un-
timed)×(Buffered, Unbuffered), i.e. four functions in total, while the design and veri-
fication efforts are focused on two independent hardware units. The benefits become
greater with the addition of more functional units to the system.

Finally, one must point out that the purpose of this chapter and all subsequent
chapters is for a proof-of-concept of the requirements, techniques and methodologies
that are essential for a formal modelling and verification framework. For this rea-
son, the demonstrated formal models in subsequent chapters are not meant to be
exhaustive.
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CHAPTER 3

Data and Control Multiplexing Approach
to Configurability

3.1 Motivation and Chapter Structure

Chapter 2 discussed a natural progression to the configurability evolution: the de-
tailed analysis of selected communication protocols and the subsequent classification
of their functional and timing aspects into functionally independent configurable hard-
ware modules. It laid the theoretical foundations of the overall Design and Verification
approach discussed in this thesis. This chapter presents the first attempt on address-
ing Objective 3: empirical analysis through formal specification and modelling.

First, Section 3.2 discusses the various implementation approaches to hardware
configurability and the progression toward the systematic approach described in this
thesis and first modelled in this chapter. Section 3.3 presents a brief introduction to
the modelling language of choice: CSP along with the reasoning behind this choice.

Section 3.4 presents details of the multiplexing scheme, which attempts to connect
the configurable hardware units using a general purpose data and control pipeline.
Figure 3.1 highlights the intended function of the models presented in Section 3.4 in
the design of the configurable communication system.

Then Section 3.5 partially addresses Objective 4 through the development of the
automatic State Machine Visualiser for use with the FDR model-checker. Finally,
Section 3.6 presents the results and conclusions of this chapter.
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Figure 3.1 Outline of Data and Control Multiplexing Approach to Configurability

3.2 Background

Looking at the modelling and verification framework from a hardware implementation
perspective, the notion of hardware configurability is quickly encountered for provid-
ing hardware that implements and supports multiple protocols. A review of different
approaches to hardware configurability provides good background to the implemen-
tation directions on which the suggested modelling system can be based. The aim is
to show the need for a generic and configurable system for the design and verification
of such protocols.

Hardware protocols were traditionally supported using dedicated hardware inter-
faces with basic configurable options to accommodate the various options within the
same protocol [30]. A fundamental functional change to the interface behaviour was
not possible and supporting multiple interfaces would require considerable design and
verification efforts.

The development of the Field-Programmable Gate Array (FPGA) [31] technology,
on the other hand, introduced a true sense of configurability to hardware design.
Nevertheless, this approach suffers from high power consumption and relatively low
clocking speeds [32]. Based on the FPGA technology Horta et al. [33] suggested
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a configurable architecture for a network application. This was a good example
for providing a configurable network protocol infrastructure using FPGA technology.
Finally, May et al. [34] suggested a different approach to configurability, which involves
providing the user with a semi-configurable communication interface that has a set
of configurability options. This approach proved useful for expressing communication
protocols using ISA implementations.

The most obvious problem with the last two approaches is the grand scale of the
verification problem. Both are not easily verifiable using traditional approaches. The
fully configurable FPGA approach poses verification questions on many levels: the
verification of the underlying FPGA fabric, the verification of the Hardware Descrip-
tion Language (HDL) specifications to be synthesised on the FPGA and finally the
verification of any higher-level software-based configurability provided by the synthe-
sised hardware. The semi-configurable approach, on the other hand, reduces the num-
ber of verification levels to possibly two: the verification of the actual communication
hardware fabric and the verification of the software sequences used for configuring the
hardware to implement a specific communication protocol. Both approaches suffer
from the state-space explosion problem, resulting from the large number of possible
configurations.

3.3 Communicating Sequential Processes

The Communicating Sequential Processes (CSP) formalism first described by Hoare
in [35] was ideal for use in this empirical analysis. This is due to the availability of
a machine-readable dialect of CSP (CSPM) developed by Scattergood [36] and also
a well-established Failures-Divergences Refinement (FDR) model-checker. FDR was
initially the brainchild of INMOS Ltd. Earlier versions were developed through a
collaboration between Formal Syst. (Europe) Ltd. [18] and INMOS.

CSP is also well suited because each functional block can be composed as an
independent sequential process and the set of blocks on the form CSP processes
synchronize over communication events. The fact that these blocks are designed and
verified individually at block level gives rise to the DfV approach.

In this section, a brief introduction to CSP modelling constructs is presented.
CSP has been devised as a modelling and verification language for computer systems
involving concurrency. There are numerous texts in literature that provide more
exhaustive theoretical and practical details about CSP. For example [35, 37–39] to
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mention a few. The aim in this section is to provide a brief and comforting background
to CSP for the unfamiliar reader.

3.3.1 Primitives

In CSP, a Process is defined as an independently existing object (or entity) which
communicates, performs or engages in actions or events. Events are visible atomic
parts of the process behaviour, which offer uniform treatment of different physical
events and also build up various styles of inter-process communication. The set of
events which are considered relevant for a particular description of an object is called
Alphabet. An object or process can only execute or engage in events that are part
of its alphabet and it is impossible for processes to execute any event outside their
alphabets. The simplest behaviour of a process is doing nothing. Such behaviour is
called the STOP process. When modelling systems in CSP, the convention is that
events are usually written as words in lower-case letters, whereas words in upper-case
letters denote process names such as the STOP process mentioned earlier.

Processes are constructed of sequences of events and other processes by means of
prefixing. For example, let Q be a process name and let x, y and z be event names,
then the process:

P = x→ y → z → Q (3.1)

is a new process, which performs the events x then y then z then exhibits the
behaviour of the process Q. It is not possible for two or more events to occur simul-
taneously.

It is possible to define processes recursively in terms of themselves. This could
be useful when there is a cycle of events that a process executes many times. For
example, one could define a CLOCK process, which executes clock events (tock)
indefinitely:

CLOCK = tock → CLOCK (3.2)

It is also possible for recursion to exist between two or more processes, such an
arrangement is called mutual recursion. For example:

Q = a→ P P = b→ Q (3.3)

are two mutually recursive processes.
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A choice of events could be available for processes to choose from at any point in
time. This could be expressed using one of two choice operators.

1. An internal choice (u): the process can decide internally and non-deterministically
which event to execute. In this case the environment has no effect on which choice
of events the process decides to execute.

2. An external choice (2): the choice of events the process can execute depends on
the ability of the environment to execute it too.

The environment of a process are processes that interact with that process at the
point of the choice.

In Eqn. 3.4, the process P is defined as an infinite sequence of external choice from
any events in the set A = {a, b, c}:

P = a→ P 2 b→ P 2 c→ P (3.4)

The choice can be made from a set of events using menu choice: if A is a set of
events and, for each event x in that set, Q(x) defines the behaviour of the process Q

that is specific to the event x, then one can rewrite the process in Eqn. 3.4 as a menu
choice as follows:

P =2 ∀x ∈ A⇒ Q(x) Q(x) = x→ P (3.5)

It is useful sometimes to define processes at many abstraction levels, where details
might be relevant in some contexts, but not in others. Abstracting away some events
the process can perform that are not of interest to the observer could be performed
using hiding or concealment. A process P, which is defined as the exact behaviour of
process Q, except that the set of events X is hidden could be written as:

P = Q \ X (3.6)

Another feature of CSP is the notion of communication channels. For example, a
process could be involved in a simple input event with another process, which could
also be interpreted as a simple channel of communication with that process. In fact,
all events in CSPM are defined as channels. However, the notion of communication
channels becomes more interesting when the channels could have additional dimen-
sion(s), in which they could communicate (possibly complex) values from a set of
defined events. Those are called complex channels. For example, a complex channel
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called input, which is able to communicate a single digit integer can be used in a
process definition as follows:

S = {0 . . 9} (3.7)

P = 2 ∀x ∈ S⇒ input?x→ compute→ output!x→ P (3.8)

where P receives a data item (input!x), performs some internal processing and
communications actions based on the received data (compute) and subsequently trans-
mits the data item unchanged (output!x).

Let us think of the process P above to represent a simple communication system.
One could abstract away (or hide) all internal system events, leaving only the recep-
tion and transmission events P′ = P \ compute. This is useful for verifying that the
overall system behaviour is equivalent to a buffer (with some additional details, such
as the depth or width).

3.3.2 Concurrency

CSP is ultimately a process algebra concerned with establishing the mathematical
relationships governing the interactions between sequential processes. For this reason,
there is a wealth of mechanisms and notations by which interactions between processes
could be specified. A brief list of concurrency operators is introduced in this section.

Let us assume the existence of two processes P and Q that need to run concurrently
under many configurations.

When the two processes to be run concurrently do not have the same alphabet,
they can be joined using the X‖Y operator:

P X‖Y Q (3.9)

where X is the alphabet set of process P and Y is the alphabet set of Q. In that
case, the two processes would synchronise over events that exist in both X and Y

sets.
On the other hand, when the design imposes the need for synchronisation over a

single set of events (for example, the union of the alphabets of both processes), then
the ‖

Z

operator can be used, in which case the two processes only synchronise over

events specified in the Z set:

P ‖
Z

Q (3.10)
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Another operator which is useful in the context of communication systems is the
pipe (or chaining) operator (�). It implies running the two processes that are used
to construct the pipe concurrently. It means that the two processes are connected
together and synchronise over events in the communication channel used in the con-
nection. When used abstractly (as in P � Q), it means that the right channel of P

is connected to the left channel of Q.
The interleave operator (|||) is used to run processes in parallel where they operate

without any direct synchronisation with each other:

P ||| Q (3.11)

The chaining operator (�) is used to chain two processes in parallel (P � Q)
where all events output by P on an arbitrary channel (say out or left) are simul-
taneously input by Q on another arbitrary channel (say in or right) and all such
communications are hidden from their common environment.

One could define an alphabetised chaining operator where the chaining operator
is used in conjunction with the alphabetised parallel operator ( ‖

Z

) to specify the

arbitrary input and output channels used by the chaining operator as follows:

AlphaChain = P ‖
left� right

Q (3.12)

As discussed earlier, the introduction to CSP discussed in this section is intended
to provide a brief and comforting background. For full CSP background the reader
is referred to [35].

Finally, CSP is inherently a mathematical description language for process alge-
bra and hence it is usually convenient to use standard mathematical notation when
describing a CSP process. In addition, Mazur [40] provides a summary of all the CSP
symbols that can be used in modelling CSP processes. The notation used for describ-
ing CSP models in this chapter (and in the whole of this thesis) uses a combination of
the Symbol Macros for CSP described in [40] as well as standard algebraic notation
to achieve best readability.

3.3.3 Timed CSP

Real-time modelling is an important aspect of communication protocols design. It
enables the verification of various performance aspects of the design at an early stage
in the design cycle, in addition to verifying other functional aspects under the same
framework. The topic of real-time modelling and verification in general is a broad
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topic and a background review of all related material is beyond the scope of this
thesis. A brief review of work related to real-time modelling in CSP is presented
here. The focus is on the practical aspects using the FDR model-checker.

Roscoe and Reed [41] are believed to have developed the first approach for mod-
elling timed systems in CSP. Subsequently, Schneider in his book Concurrent and
Real-time Systems [39] discussed Timed CSP in detail.

Ouaknine [19] discovered close connections between Timed CSP and a discrete
time version called tock-CSP. In tock-CSP the passage of time is represented by an
external event (usually called tock), which is a global event that happens regularly
and infinitely.

Traditionally the tick event is normally associated with clock actions rather than
tock. However, tick is used in CSP to denote successful termination of a process using
the CSP symbol X or a process named SKIP. Hence, tock was chosen to represent
clock events.

The use of an external CSP event to represent clock events changes the semantics of
some CSP constructs and models including the failures/divergences and traces model.
See [19] for further details. Furthermore, in the book titled Understanding Concurrent
Systems, Roscoe [Chapters 14 and 15, 38] focused on the practical aspects of tock-
CSP using case studies and automated model checking using FDR. The case studies
included the modelling and verification of an algorithm called the Bully Algorithm
which is used in distributed systems for dynamically selecting a coordinator.

In an earlier case study, Seidel [42] modelled and verified the Peripheral Intercon-
nect Bus developed by Open Microprocessor Initiative (OMI) [24]. Seidel showed,
through the use of automated model checking, that two different implementations
of the protocol are compatible with the higher-level specification. This gave rise to
the question of whether both of these implementations are regarded as acceptable,
according to the standard, because they are mutually incompatible.

The author has made various attempts to verify the results of that study using
a number of FDR releases and different refinement models. Those attempts were
all unsuccessful. The author has now been made aware that Seidel has used an
experimental implementation of the Tau Priority Model which was under development
by Formal Syst. (Europe) Ltd. [18] at the time.

This chapter is dedicated to the modelling of the configurable communication
system, hence the brief discussion of tock-CSP here is intended as a background to
the modelling aspects of tock-CSP.
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All aspects and constructs of CSP discussed in this section are intended as an
introduction to the modelling aspects of CSP, including concurrent aspects in Sec-
tion 3.3.2 and real-time aspects in Section 3.3.3. The refinement models used in the
analysis of different properties of CSP processes are an important part of CSP. Those
refinement models are introduced later in Chapter 7, when Formal Verification us-
ing Refinement Model-Checking is discussed. In particular, Section 7.2.1 presents a
brief review of those models. The use of those models for the verification of real-time
properties of processes is discussed in more detail in Section 7.2.2.

3.4 Data and Control Multiplexing

An early approach for providing configurability was considered, which was based on
a shared pipeline of multiplexed data and control information. This was considered
as a way to avoid many high-level race conditions that could result from separating
the control and data pipelines. A block diagram for this approach is presented in
Figure 3.2.

Tock

ISA PHYSTC DDC

Control + Data

BiChan

Left

Right

ISA PHYSTC DDC

Right

Figure 3.2 Multiplexing Data and Control System Block Diagram

The idea behind the pipeline of functional units in Figure 3.2 is to unify the inter-
faces for all the functional units (now CSP processes), whereby each one would have
two communication interfaces, one for communicating with each adjacent functional
unit in a linear formation.

The approach relies on a bidirectional, non-blocking communication channel as a
building block for the pipeline. Eqn. 3.13 shows the CSP description of this channel.
It uses two blocking unidirectional CSP channels. All functional blocks are chained
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together using the CSP chaining operator [35]. The order in which those functional
blocks are organised is fixed, as discussed in Section 2.5.5.

The BiChan allows for associated processes to select and respond to communicated
tokens of interest. Unwanted tokens pass through the pipeline unchanged.

This bidirectional, non-blocking channel is defined in Eqn. 3.13.

BiChan(left, right, lT, rT, Proc, . . .) = (3.13)

(2 ∀x ∈ rT ⇒ right.x?rD → (3.14)

BiCR(left, right, lT, rT, x, rD, Proc, . . .)) (3.15)

2 (2 ∀ y ∈ lT ⇒ left.y?lD → (3.16)

BiCL(left, right, lT, rT, y, lD, Proc, . . .)) (3.17)

BiCL(left, right, lT, rT, y, lD, Proc, . . .) = (3.18)

right.y!lD → tock → Proc (3.19)

2 tock → BiCL(left, right, lT, rT, y, lD, Proc, . . .) (3.20)

2 (2 ∀x ∈ rT ⇒ right.x?rD → (3.21)

BiCRL(left, right, lT, rT, x, rD, y, lD, Proc, . . .)) (3.22)

BiCR(left, right, lT, rT, x, rD, Proc, . . .) = (3.23)

left.x!rD → tock → Proc (3.24)

2 tock → BiCR(lT, rT, x, rD, Proc, . . .) (3.25)

2 (2 ∀ y ∈ lT ⇒ left.y?lD → (3.26)

BiCRL(left, right, lT, rT, x, rD, y, lD, Proc, . . .)) (3.27)

BiCRL(lT, rT, x, rD, y, lD, Proc, . . .) = (3.28)

right.y!lD → tock → BiCR(left, right, lT, rT, x, rD, Proc, . . .) (3.29)

2 left.x!rD → tock → BiCL(left, right, lT, rT, y, lD, Proc, . . .) (3.30)

2 tock → BiCRL(left, right, lT, rT, x, rD, y, lD, Proc, . . .) (3.31)

where:
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• left : is the left channel;

• right : is the right channel;

• lT : are tokens the process can pass from left to right;

• rT : are tokens the process can pass from right to left;

• Proc: is the process associated with this particular channel instance; and

• . . . : is used to pass any other state variables to the target process.

The Proc parameter is required so that control is returned to the associated process
after a token has been successfully forwarded to the respective channel.

This BiChan process is then used in processes that make up the middle section of
the pipeline. See Eqns. 3.44 and 3.55 for more details.

For demonstration purposes, a minimal but representative description of processes
is presented in this section. This description is intended to demonstrate the concept
of the Data and Control Multiplexing approach. The models discussed in this section
are an earlier snapshot of the concrete communication system. They are the result of
a large number of iterations through the complexity analysis procedure discussed in
Chapter 4. For a full description of all the modelled functional units and all associated
instructions, the reader is referred to Chapter 5.

Also, some of the details presented here were optimised at later stages, hence the
functional units described here are not necessarily equivalent to the ones discussed in
Chapter 5. For example, the physical layer functional unit (PHY process in Eqn. 3.61)
was later optimised out and the state of the interface is stored in the DDC unit, as
discussed in Section 5.3.2.

Eqn. 3.32 shows the implemented commands in this snapshot which are:

• Cdata, basic data I/O operations to the PHY;

• Ccond, data dependent I/O command to the DDC;

• Ctmd, time dependent I/O command to the STC; and

• Cstm, reset the time counter in the STC.
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Eqn. 3.33 defines the list of functional units that are available at this stage.
Eqn. 3.35 defines the list of all possible data items that could be communicated
in the system.

datatype Command = Cdata |Ccond |Ctmd |Cstm (3.32)

datatype Block = Bisa |Bcond |Braw |Btmd (3.33)

DataSize = DS = 3 (3.34)

DataWord = DW = {0 . . (2DS − 1)} (3.35)

Boolean = {0 . . 1} (3.36)

ddc = 0 (3.37)

stc = 1 (3.38)

channel tock (3.39)

inc(a, limit) = (a+ 1) mod limit (3.40)

In light of the above definitions, the definitions of the STC (Eqn. 3.44), DDC

(Eqn. 3.55), PHY (Eqn. 3.61) and ISA (Eqn. 3.67) processes follow:

channel lSTC, rSTC : Block.Command.DataWord (3.41)

lSTCThro = {Bcond .Ccond} (3.42)

rSTCThro = {Bisa .Ccond,Bisa .Cdata} (3.43)

STC = STC ′(0) (3.44)

STC ′(oT ime) = tock → STC ′(inc(oT ime, 2DS)) (3.45)

2 lSTC.Btmd .Cstm?time→ tock → STC ′(inc(time, 2DS) (3.46)

2 lSTC.Btmd .Ctmd?time→ (3.47){
rSTC.Braw .Cdata!stc→ STC ′(oT ime) if oTime > time

STCcheck(oT ime, time) otherwise
(3.48)

2 BiChan(lSTC, rSTC, lSTCThro, rSTCThro, STC ′, . . .) (3.49)
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STCcheck(oT ime, time) = tock → (3.50)
rSTC.Braw .Cdata!stc→

STC ′(inc(oT ime, 2DS))

}
if (inc(oTime,2DS) = time)

STCcheck(inc(oT ime, 2DS), time) otherwise

(3.51)

The STC ′ process 3.45 shows an example of how the BiChan could be used to
connect intermediate processes. The lSTCThro set defines the list of tokens that
the STC process expects to receive from the lSTC channel and pass onto the rSTC
channel. Equivalently, the rSTCThro set defines the list of tokens that the STC

process expects to receive from the rSTC channel and pass onto the lSTC channel
without any processing.

channel lDDC, rDDC : Block.Command.DataWord (3.52)

lDDCThro = {Braw .Cdata} (3.53)

rDDCThro = {Bisa .Cdata} (3.54)

DDC = lDDC.Bcond .Ccond?cond→ tock → DDCcheck(cond) (3.55)

2 BiChan(lDDC, rDDC, lDDCThro, rDDCThro, DDC, . . . ) (3.56)

DDCcheck(cond) = rDDC.Braw .Cdata!ddc→ (3.57)

rDDC.Bcond .Cdata?npv → (3.58){
lDDC.Bisa .Ccond!npv → DDC if (npv = cond)

tock → DDCcheck(cond) otherwise
(3.59)

The DDC process in Eqn. 3.55 is able to perform a conditional input by continually
polling the PHY for the desired value. The instruction is finished when the right value
is observed and subsequently communicated back to the ISA unit. The DDC unit also
uses the BiChan mechanism to pass tokens not addressed to it as shown in Eqn. 3.56.
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channel lPHY, rPHY : Block.Command.DataWord (3.60)

PHY = PHY ′(0) (3.61)

PHY ′(opv) = (3.62)

2 ∀npv ∈ Boolean⇒ rPHY.Braw .Cdata?npv → PHY ′(npv) (3.63)

2 lPHY.Braw .Cdata .ddc→ lPHY.Bcond .Cdata!opv → PHY ′(opv) (3.64)

2 lPHY.Braw .Cdata .stc→ lPHY.Bisa .Cdata!opv → PHY ′(opv) (3.65)

The PHY process 3.61 is responsible for monitoring the state of an external com-
munication wire and reporting it to requesting processes (DDC or STC in this case).
In Eqn. 3.63, Braw is the block address of type Block, Cdata is the command of type
Command and npv is the new port value of type DataWord, which is used to com-
municate any data of size DS. Notice that the rPHY channel is theoretically able to
communicate any data value of size DS since it was defined like all other multiplexing
channels: Block.Command.DataWord. In Eqn. 3.63, however, the rPHY channel is
only intended to communicate a subset of those values represented by the Boolean
set.

channel rISA : Block.Command.DataWord (3.66)

ISA = (u ∀ data ∈ Boolean⇒ rISA.Bcond .Ccond!data→ (3.67)

rISA.Bisa .Ccond?data→ ISA) (3.68)

u (u ∀ time ∈ DataWord⇒ rISA.Btmd .Ctmd!time→ (3.69)

rISA.Bisa .Cdata?data→ ISA) (3.70)

u (u ∀ time ∈ DataWord⇒ rISA.Btmd .Cstm!time→ ISA) (3.71)

An abstract instruction set is defined as the ability of the system to perform
any sequence of instructions in the absence of a more concrete specification of this
sequence. This idea will become clearer when the ISA-Oriented Specifications of a
communication protocol are discussed in Chapter 6.

Finally, the top-level SYSTEM process can be defined as the linear chaining of
the individual building blocks as in Eqn. 3.72.

SYSTEM = ISA ‖
rISA� lSTC

STC ‖
rSTC� lDDC

DDC ‖
rDDC� lPHY

PHY (3.72)
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The study in this chapter was performed using a version of the system that only
had three instructions implemented in the ISA process (Conditional Input, Timed
Input and Time Setting). Even with this minimal set of functions modelled, the
resulting state machine for the individual building blocks was very large. This is
evident from Table 3.1 which shows the metrics for individual processes as well as the
top-level system.

The metrics in Table 3.1 were extracted iteratively by changing the size of the
DataWord set expressed in bits (DataSize = DS = log2 (|DataWord|)).

ISA STC DDC PHY SYSTEM
DS

States Trans. States Trans. States Trans. States Trans. States Trans.
1 13 20 50 146 20 47 6 12 308 1300
2 17 32 252 892 46 141 12 32 1648 10256
3 25 56 1496 6104 122 473 24 96 9920 101440
4 41 104 10032 44848 370 1713 48 320 66304 1208576

Table 3.1 Metrics of Data and Control Multiplexing System

Table 3.1 shows from this early stage that the number of possible states and tran-
sitions of the overall system is very large, even for small values of the communicated
data-type (DS = 4).

When the number of transitions presented in Table 3.1 was plotted against DS, it
became apparent that the relation is logarithmic. This is obvious from Figure 3.3d,
where the number of transitions in various processes were plotted against DS on a
logarithmic scale. Figure 3.3 also shows that the curves are always monotonically
growing, at least for the gathered metrics. Looking at the CSP models in Eqns. 3.32
to 3.72, there is no reason to suspect otherwise− as the size of the DS variable grows,
all related channel communications and associated processes grow.

Moreover, the DDC and PHY processes defined in Eqns. 3.55 and 3.61 respectively
have been modelled in such a way that they are independent of the DataWord set
and its associated configuration parameter (DS). Nevertheless, Figures 3.3b to 3.3d
show that not only those processes are indeed dependent on DS, but they also show
that the relation is logarithmic.

The need for further observability into the model-checker and its state machine
representations is highlighted next. Such observability will hopefully uncover the
reason behind the high level of dependency of the above processes and their state
machines on DS.
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Figure 3.3 Number of Transitions vs. DataSize

At earlier stages of this study, the specification and verification of the system were
aided by the use of the FDR model-checker [18] and its CSPM scripting language [43].
However, as the study progressed, the Tool Command Language (TCL) interface
of FDR proved useful in automatically constructing and performing model-checking
tasks. It was noticed that this interface had limited documentation in the official
manual of FDR, compared to the TCL/TK interface. Additional documentation
of the TCL interface of FDR was found in FDRExplorer [44]. After extensive use
of the command-line TCL interface, the need for further observability and higher
levels of abstractions to represent state machines became apparent. Improving the
observability and usability of model-checkers would help improve the adoption of the
model-checking technology for the following reasons.

• Improving the maturity of the model-checking tools.

• Increasing the supporting evidence about the effectiveness of such verification
methodology for verifying complex systems.

• Increasing the possibility of integrating model-checkers in the hardware design
flow.
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Woodcock et al. [45, page 31] reported that the second and third use of a formal
technology and tool chain can lead to order-of-magnitude cost reductions. This is an
example which highlights the need for improvements in the usability of the model-
checking tools. Hoare and Misra [46] provided good insight into the challenges facing
model-checking tools over the next 20-50 years. Both Bicarregui et al. [47] and Hoare
and Misra [46] emphasised the need for greater efforts in the research and development
of formal model-checking tools.

An automatic generation of graphical representations of state machines would
enable the visual inspection of those state machines and the analysis of the associated
processes. This would improve the usability of FDR, especially for hardware modelling
purposes. A State Machine Visualiser for processes was developed as part of this
framework. This is discussed in Section 3.5.

3.5 State Machine Visualiser

State machine description is an essential phase of any hardware design cycle. This is
typically performed at an early stage. These state machines are then converted into
another abstraction either manually or sometimes automatically if available tools
support that transformation.

This is not the case for FDR, therefore design has to be manually converted into
CSP description. FDR, on the other hand, uses the CSP description to compile
each process into internal representations of state machines. This is evident from
the transition list accessible through the TCL interface of FDR. As a first step in
the verification process, it is important to confirm that these two transformations
are accurate and that they both preserve the intended functional description of each
process. This is also necessary because original state machines with a handful of
transitions were compiled into Indexed State Machine (ISM) objects in FDR with at
least an order of magnitude increase in the number of transitions.

Observability of the internal structure of FDR state machine objects was only
available through the transitions function of the ISM objects. Because the transitions
list represented a directed graph of the internal state machine, it should be possible to
visually inspect this graph and possibly correlate it to the original hand-crafted one.
For small processes, the graph can be manually sketched and a comparison be made.
But as the system grows, and the number of transitions in the graph increases, the
process becomes cumbersome, tedious, and error-prone. For this reason, an automatic
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conversion from a transitions list to a graphical representation of the underlying state
machine is required.

An open system for graph visualisation called Graphviz [48] was instrumental in
converting ISM objects to a graphical form. It has a plain text interface language
called Dot [49]. A tool called FDRlei has been developed as part of this framework
which helped in the visualisation process. This involved the reconstruction of the
ISM object, using the various TCL interface functions provided by FDR. Then an
intermediate representation of the transition list using the Dot language file format
is generated. Finally, using the Graphviz system, this intermediate representation is
compiled into a Portable Document Format (PDF) file. Though it is possible to add
the rendering specifications of states and transitions using the Dot language, this is
currently left to be handled automatically by the Graphviz system.

This whole process was encapsulated in the ShowGraph function, which is part of
the Graph object in FDRlei 1. At the time of writing, only a minimal set of the Dot
language was employed as proof of the concept. A more elaborate implementation
with advanced graphical representations is beyond the scope of this thesis.

This visual inspection and analysis was useful in the development of small and
medium size processes ranging between a handful of transitions to 10s or possibly
100s of transitions in some cases.

As an illustration of the ShowGraph function, let us consider the following ex-
ample: A single-entry clocked buffer has two channels, an input channel (in), and
an output channel (out). The number of clock cycles between the input and output
operations is represented by Delay and the total number of unique items that can be
held in the buffer is represented by DataItems in the following CSP description:

Delay = 1 (3.73)

DataItems = DI = 5 (3.74)

Data = {0 . . (DataItems− 1)} (3.75)

channel in, out : Data (3.76)

channel tock (3.77)

Copy = in?x→ Copy′(Delay, x) (3.78)

2 tock → Copy (3.79)

1A Linux(Intel) 64 bit binary compilation of FDRlei is available online along with a brief de-
scription at www.cs.bris.ac.uk/~kharmeh/thesis/fdrlei.tar.
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Copy′(N, x) =

{
tock → Copy′(N−1, x) if N > 0
out!x→ tock → Copy otherwise

(3.80)

Figure 3.4 illustrates the state machine drawing of the Copy process in Eqn. 3.78.
It results from applying the ShowGraph function to the compiled ISM object in FDR-
lei.

0 tock

1

in.3

2

in.2

3

in.1

4

in.0

5

in.4

6

tock

7

tock

8

tock

9

tock

10

tock

11

out.3 out.2 out.1 out.0 out.4

tock

Figure 3.4 State Machine of the Copy Process

The ability to visualise CSP processes in the form of graphical representations of
state machines provides the desired observability into FDR’s transformation mecha-
nisms. This gives the necessary confidence that the functionality specified earlier in
the design cycle is correctly captured using CSP descriptions.

In addition, the visualisation of large processes with hundreds or possibly thou-
sands of transitions was crucial in gaining a better understanding of how various
design parameters affect the overall system. For example, if the DataItems held by
the Copy process above were changed to 10, and the Delay parameter became 3, then
the graph of the Copy process changes considerably as demonstrated in Figure 3.5.

By examining the automatically generated graphs, it was possible to see how each
CSP construct was transformed into its state machine representation. Furthermore,
it was possible to see how each process element or parameter (such as Delay in the
Copy process or BiChan in the STC process) affects the overall state machine of
that process. These visualisation capabilities helped in the modelling of lower-level
processes with a small number of states and transitions. All the state machine graphs
demonstrated throughout the thesis were generated using the ShowGraph function
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Figure 3.5 State Machine of the Modified Copy Process

discussed here. The contrivance of such a function and its subsequent use in demon-
strating the power of the CSP specification and verification techniques is an important
contribution of this section.

Finally, it is understood that an industrial release of FDR has built-in state ma-
chine visualisation capabilities. That release or any related documentation is not
readily available, hence an objective comparison was not possible. Also, FDREx-
plorer [44] has a graph visualisation script, which translates the ISM transitions list
into a JGraph [50] file format. Even though this JGraph format looks similar to the
Dot format used by FDRlei, the JGraph version used is an old one and existing tools
do not support it anymore. In addition, the JGraph tools are proprietary software,
which is not readily available for academic research.

3.6 Results and Summary

The graph drawing functionality discussed in Section 3.5 helped in the introduction
of a number of optimisations:

1. In initial attempts, BiChan allowed passage for any event e ∈ Σ. This allowed
for the construction of a more dynamic pipeline, in which processes would con-
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sume tokens of relevance and forward all other tokens. This makes the con-
struction of the system more flexible, but the complexity of such an approach
was simply unmanageable. In Eqn. 3.13, this was narrowed down to selected
sets of interesting events (lT and rT ).

2. Processes were initially designed to offer passing tokens using the BiChan mech-
anism at many points in the process execution cycle. This was optimised to
allow tokens through the process only in the idle state.

Figures 3.6, 3.7, and 3.8 show the resultant state machines of the PHY, DDC,
and STC processes, respectively. These have been generated with a very small data
set (DataSize = 2).
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Figure 3.6 State Machine of the PHY Process 2

2Figure is intended to be viewed online using the zoom function.

As discussed earlier, the PHY process has been modelled so that it only uses
a subset of the DataWord set as defined in Eqn. 3.63. However, it is evident from
Figure 3.6 that FDR has compiled the PHY process so that all values in the DataWord
set are being used for communication and synchronisation on the rPHY channel.

As the processes grew, it became clear that further analysis using metrics and state
machines was becoming cumbersome and time-consuming and that the generated vi-
sualisations were simply incomprehensible to the naked eye. Figure 3.8 demonstrates
that even for a relatively small state machine (≈ 250 states and ≈ 1000 transitions),
visualisation might not be the best way for analysing the state machine and the as-
sociated process description. This, along with other observations made earlier about
the Data and Control Multiplexing Pipeline highlighted the need for a better and
more precise understanding of how the compiled state machines are related to the
underlying CSP models and the associated data sets and definitions. This in turn
has inspired the inception of the next chapter titled: Complexity of Hardware Design
and Model-Checking.
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Figure 3.8 State Machine of the STC Process 2
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3.7 Future Work

State machine visualisation would benefit from state-space reduction algorithms.
Leuschel and Turner [51] demonstrate two state-space reduction algorithms which
help in the visualisation of state machines in the ProB model-checker. It would be
interesting to compare the state machines and the associated visualisations generated
by FDRlei with the ones generated by ProB.

Roscoe et al. [52] and Formal Syst. (Europe) Ltd. [18] present a few other com-
pression algorithms that are implemented by FDR. It would also be interesting to
visualise and compare the state machines generated by FDR before and after apply-
ing the compression algorithms.
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CHAPTER 4

Complexity of Hardware Design and
Model-Checking:
Formal Analysis of State Machine Metrics

4.1 Motivation1 and Chapter Structure

Objective 5 highlighted the need for the investigation of viable and objective hardware
system complexity analysis mechanisms. The need for analysing the complexity of
the model-checking tools was also highlighted. This is the main topic of this chapter.
The chapter also addresses objective 6 partially: the need for an empirical analysis
of the developed systems, which is discussed in Section 4.6.2.1.

In this chapter, objective definitions of State-Space and Communication-Space
Complexities are presented in terms of underlying hardware system metrics. This
should enable the quantification of the State-Space Explosion problem. In addition,
it enables the identification and subsequent quantification of a Communication Space
Explosion phenomenon.

This involved the analysis of the complexity and scalability of the model-checking
tool itself (namely FDR) in handling exponentially growing complex systems.

A detailed case study is presented to show how the complexity formulae can be
developed through the use of current model-checking tools coupled with automated
equation solving techniques.

1Additional motivation for this chapter is omitted at the discretion of the author.
Copyright c© Suleiman Abu Kharmeh 2009.
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Abu Kharmeh et al. [3] presented a brief progress update which discussed some
of the topics of this chapter.

First, Section 4.2 explains the complexity issues facing hardware specification and
verification techniques. Section 4.3 provides previous work that identifies and ad-
dresses the complexity issues of model-checking and state-space explosion. It also
discusses previous work that addresses the performance and benchmarking of the
model-checking tools and algorithms. Then Section 4.4 describes how metrics of
complied processes could be analysed in terms of specific configuration parameters
and how this relationship could be expressed using complexity equations. Section 4.5
presents the challenges faced when extracting the complexity metrics from the FDR
model-checker and the implemented optimisations to FDR to speed up this process.
Section 4.6 presents a detailed complexity analysis of the data and control multi-
plexing approach to configurability presented in Chapter 3, using automated solving
techniques for calculating the needed complexity equations. Section 4.7 describes
how asymptotic analysis of the relevant complexity equations provides an insightful
knowledge about the nature of the relationship between the analysed metric and the
configuration parameter. This elevates the focus beyond the metrics and the detailed
complexity equations. Finally, the chapter concludes with a summary in Section 4.8
and a discussion of possible future work in Section 4.9.

4.2 Introduction

Hardware designs must meet a complex set of functional and performance require-
ments. Above all, designs are increasingly required to support additional config-
urability options in order to meet the changing demands of system and application
designers. Configurability adds to the ever-increasing complexity of hardware designs.

It is important to consider the design and verification complexity at an early stage
of the design cycle. Doing so would provide a tractable approach for the design of
complex systems by structuring the seemingly dependent, intertwined and complex
design requirements into relatively simple blocks with specific requirements to be ver-
ified. However, the overall system resulting from the composition of these functional
blocks still poses significant complexity and verification challenges. A major issue is
the nature of the complexity growth of the combined system and its state space as
the functional specification grows and more blocks are introduced.

The complexity of the abstract functional specification, as well as the complexity
of the proposed implementation of the configurable hardware blocks are commonly
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found to grow exponentially as additional blocks are added. Traditional simulation-
based design and verification approaches are inherently intractable for verifying and
analysing the complexity of state-of-the-art configurable hardware designs.

A formal specification and verification framework is best suited for analysing such
hardware designs. This framework must be capable of managing the inherent com-
plexity of such designs and the associated wide range of applications. This framework
must also be scalable and extendible to enable the support of additional functional
specification and systems beyond the initially anticipated ones.

This chapter focuses on complexity issues of the design and verification framework.
In particular, the aim is to propose and demonstrate an objective and quantitative
definition for Hardware Complexity. The focus here is on the complexity of hardware
systems, when they are described as a collection of Communicating Sequential Pro-
cesses (CSP) or state machines. Using asymptotic analysis of the resulting complexity
definitions and formulae, it is possible to identify a configuration threshold at which
the complexity of the system amounts to a State-Space or Communication-Space Ex-
plosion.

4.3 Background

Finite State Machines (FSM) are arguably the most universal abstraction for de-
scribing hardware systems. FSMs underpin many hardware specification, implemen-
tation and verification systems, including model-checking in general and the Failure-
Divergences Refinements (FDR) model-checker [18]. It is therefore natural to identify
and to quantify hardware complexity in terms of FSM complexity.

A well-known problem of using state machines for model-checking based verifi-
cation is the State Space Explosion problem. Roscoe [Chapter 17, 38] explains this
phenomenon. An objective and quantifiable way of measuring when state-space ex-
plosion is likely to happen is needed. Roscoe also discusses a number of different ap-
proaches to managing the state space and possibly avoiding this phenomenon. Lazic
et al. [53] suggested that the approach is to induce the independence of a process from
a design parameter or data-type according to a set of rules. By doing so, it is possible
to devise mechanisms for managing the size of the examined data-type and hence
the overall state space. This chapter instead addresses the dependence of a system
on a data-type from a practical perspective by exploring the exact relationship be-
tween the complexity of the compiled state machines and selected design parameters
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or data-types. This enables for better observability into the complexity of both the
modelled systems and the model-checking abstractions being used.

In his thesis, Allis [54] defines the State-Space Complexity to be “the number of
legal game positions reachable from the initial position of the game”. However, this
is simply a measurement of the state space.

Yao [55] explains Communication Complexity to be concerned with finding the
minimum number of communication events that are exchanged between two parties in
order for them both to compute a common function. Similar to Allis, Yao defines the
complexity to be simply a statistical count or a metric of some entity (communication
events in this case). Again, this is simply a measurement of the communication space
and does not shed any light on its complexity.

4.3.1 Performance and Optimisation of Model Checking

For analysing the complexity of state machines and also as a measure of the scalability
of the developed framework, benchmarking and statistical analysis of different metrics
are sometimes a good starting point, as will be discussed in Section 4.5. Examples in
literature on the scalability of different model-checking techniques and optimisations
exist.

Roscoe et al. [52] describe modelling and compression methods using CSP and
FDR to verify systems as large as 101000 communicating processes. Though it serves
as an insight on the possible capabilities of FDR, the approach only applies to the
hierarchical construction of systems. Roscoe et al. [52] report that the system perhaps
has 7101000 states.

Using a variety of systems and communication protocols to benchmark their FDR-
Compliant validation tool, Leuschel and Fontaine [43] have chosen experiments with
state machines of a maximum size of 105 states. That study was reported in 2008
and currently FDR can handle more, as will be demonstrated in Section 4.5.

Clarke et al. [56] describe another approach for managing the state space. Namely,
they illustrate the Binary Decision Diagrams (BDD) algorithm for reducing the state
space and consequently managing the state-space explosion problem. While BDD is a
useful compression technique when implemented as part of a model-checker, it would
not provide any information about the complexity of the models being checked and
their dependencies or inefficiencies. The compressed and optimised state machines
are of no use outside the model-checker, unlike the analysis technique proposed in this
chapter, which would result in optimising the original models. Using BDD, Clarke
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and Lerda [57] and Clarke et al. [58] reported state machine sizes of 1020 and 10120

states, respectively.
Other methods for managing the state space exist. Turner et al. [59] demonstrate

the application of a method called Symmetry Reduced Model-Checking for the B lan-
guage. Up to 231 speedup in the verification time on selected problems was reported.
Exponential improvements to the state space were also reported.

Nalumasu and Gopalakrishnan [60] presented perhaps the most relevant bench-
mark, where the maximum number of states visited by two different model-checkers
(SPIN and PV) was 5× 106.

In a more recent development, Pelanek [61] discusses the Benchmarks for Explicit
Model-Checkers (BEEM) initiative. This is an interesting development in the quest
for an objective comparison to be made between various model-checking tools and
the capabilities of each one. The online portal shows the benchmark results for up
to 7.5 × 107 using the Distributed Verification Environment (DiVinE). Benchmark
results are also available for the SPIN [62] model-checker.

In initial experimentation, FDR was able to verify various properties about sys-
tems as large as 8× 106 states.

There is little evidence to compare the performance of different model-checking
tools and algorithms in terms of time and memory required to perform verification
checks (except for SPIN and DiVinE, as mentioned earlier).

The detailed benchmarking and optimisation analysis of FDR was essential to
gauge its ability for analysing the complexity of the demonstrated configurable com-
munication system, as discussed in Section 4.6.2.1. This was also a good indication of
the ability of FDR for subsequently verifying functional and performance properties
of the system, as discussed later in Chapter 7.

4.4 Hardware Complexity:
From Metrics to Complexity Equations

The structured approach to designing a complex system mentioned earlier divides
the state space of the complex system into more tractable functional units. The
system specification that results from combining these functional units, however, is
still complex in terms of its state space.

When using a formal specification, the structured approach exposes unforeseen
configurations and interactions between the independent functional blocks. The mod-
elling formalism (CSP in this case) might also introduce hidden complexity aspects of
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the system not originally apparent or anticipated. This is apparent in model-checking
when the system has to be enumerated and evaluated with respect to all possible val-
ues of a data-type for all possible functional blocks and subsequently for the full
system. Also, all corner cases and design holes have to be considered and modelled
for the system specification to be sound and viable for model-checking.

An essential part of formal modelling and verification is the evaluation of the
system behaviour with respect to all possible interactions of all the processes of the
system. Often, the complexity of the system is said to explode due to the factors
described above. Model-checking tools face a great problem when they cannot predict
the occurrence of a complexity explosion in advance. In such a case, tools could spend
an unacceptable amount of time before they fail to perform the desired checks.

Metrics are increasingly being used to assess the complexity of a system. In light
of the above discussion about the complexity of the verification and model-checking
methodology, an obvious metric that might be used to assess the complexity is the
number of states in the state space. This metric is usually accessible from the model-
checker (as is the case with FDR). Other metrics to analyse the complexity of state
machines, such as the complexity of the communication space are not so obvious and
hence are not usually available by model-checkers.

4.4.1 State-Space Complexity

A hardware system is traditionally specified as (or compiled into as is the case with
FDR) an FSM composed of states and transitions. When the size of the state machine
becomes unmanageable by the model-checker, this scenario is considered to be a State-
Space Explosion. However, there has not been a quantifiable approach for accurately
predicting the occurrence of this phenomenon.

One way to address this problem is through parametrised verification and data
independence analysis as suggested by Roscoe [38]. In systems where the number of
building blocks is large and each block introduces new data-types, it becomes apparent
that what is needed is to assess how dependent the system is on such data-types.
Dependencies usually transcend individual building blocks and hence are apparent in
overarching blocks and processes and ultimately in the top-level system. This affects
the overall behaviour and complexity of the system and it becomes dependent on
many data-types and configuration parameters of the individual functional blocks.

The specification of configurable systems normally depends on various configu-
ration parameters and data-types. It is essential to find techniques to measure the
dependence of the system on each of these data-type and configuration parameters.
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Expressing the value of the state space and its relation to a specific configuration
parameter would be best described using a formula or function. Such a formula can
be called the State-Space Complexity. This complexity function will be useful for
predicting the manageability of the verification problem, as will be demonstrated
later in Section 4.6.2.1. Most importantly it will be possible to provide insight as to
when the State-Space Explosion problem may occur and how to avoid or counteract
its effects.

Ideally, a model-checking tool would give this information at an early stage of the
verification task through static analysis of the machine-readable specification. This
static analysis stage would fit between two stages of the compilation process of a
model-checker, possibly as an additional phase to the semantic analysis stage. The
specific value of each parameter in question could either be implicitly extracted from
the model or provided explicitly. Then, by possibly interpolating previously provided
benchmark results, the model-checker can accurately predict the time and memory
requirements for performing the verification task in question and provide warnings
about possible bottlenecks. Consequently, one can decide whether to continue with
the verification task or not.

In the absence of tool support for producing the complexity formulae and the
availability of the state count, an iterative process can be devised to establish how a
configuration parameter affects the overall size of the state machine. The state space
is then presented as a mathematical formula: a polynomial function or in particular
cases an exponential function. This function represents how the state space changes
as a specified parameter changes.

As an illustrative example, let us consider the Copy process presented in Eqn. 3.78.
By varying the value of DataItems (or DI in short) between 1, 2, 3, 4 and 5, the
corresponding state space was 4, 6, 8, 10 and 12 respectively. Hence, in this case, the
State-Space Complexity function for the Copy process (CopySComplex) is:

CopySComplex(DI) = 2 + 2×DI (4.1)

Using the above complexity function, the state space can be accurately predicted
for any value of DI.

For now, the state-space analysis will be restricted to polynomial complexity func-
tions of degree n:

SComplex(x) = c0 + c1 × x+ c2 × x2 + . . .+ cn × xn (4.2)
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In Section 4.4.3, an exponential form of the complexity function will be discussed.
It is not usually straightforward to find the coefficients of the complexity function

and an iterative process using an equation solver proved useful in the absence of the
support from formal modelling tools. This will be demonstrated in the case study in
Section 4.6.2.1.

4.4.2 Communication-Space Complexity

An important aspect for quantifying the complexity of CSP models is their commu-
nication complexity. By analogy with the state space and the State-Space Complexity
it is possible to define the communication space and its associated Communication-
Space Complexity.

It is also possible for a specification to exhibit Communication-Space Explosion
which is analogous to State-Space Explosion. It gives rise to the problem of predict-
ing when the total number of communications between agents in a communication
system grows out of control (possibly exponentially) as the parameters or inputs for
the system increase. This prediction is performed using the Communication-Space
Complexity formulae described later in this section.

The communication space of a CSP process shall be defined as the total number
of edges in the state space. This can be extracted from FDR as the total number of
transitions in the compiled FSM. This metric indicates how well connected the FSM
graph is. Communication space is a rather interesting metric because two FSMs with
the same state space can have different communication spaces, as demonstrated next.

Let us consider the following adjustment to the Copy process:

CopyNew = in?x→ Copy′′(Delay, x) (4.3)

2 tock → CopyNew (4.4)

Copy′′(N, x) =


tock → Copy′′(N−1, x)

2 tock → Copy′′(N−1, (x+ 1) mod DI)
2 tock → Copy′′(N−1, (x− 1) mod DI)

 if N > 0

out!x→ tock → CopyNew otherwise

(4.5)

The CopyNew process now optionally modifies data items by incrementing or
decrementing their values with each clock cycle. Figure 4.1 shows the state machine
of the CopyNew process.
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Figure 4.1 CopyNew Process with Delay = 1 and DataItems = 5

Two state machines with the same State-Space Complexity do not necessarily have
the same Communication-Space Complexity, as can be evident from Figure 4.1 when
compared to Figure 3.4. The transitions count of both Copy and CopyNew processes
were extracted by varying DI. These are presented in Table 4.1.

DataItems
(di)

Transitions
(Copy)

Transitions
(CopyNew)

1 5 5
2 8 8
3 11 11
4 14 22
5 17 27
6 20 32

Table 4.1 Communication-Space Change

By analysing the dependency of the Transitions metric on the value of DataItems
(DI), the Communication-Space Complexity function for the Copy process was found
to be:

CopyCComplex(DI) = 3×DI +2 (4.6)

For CopyNew, the complexity function becomes:

CopyNewCComplex(DI) =

{
3×DI +2 if DI ≤ 3
5×DI +2 otherwise

(4.7)
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As will be discussed in Section 4.4.3, the focus is on the asymptotic behaviour of
the complexity function (similar to Big O notation) and hence the Communication-
Space Complexity function of CopyNew for DI ≤ 3 can be ignored, in which case the
function becomes a standard polynomial similar to Eqn. 4.2.

The complexity formulae above show that two processes with the same state space
can have different communication spaces. Hence, the obvious state-space metric that
is typically used for assessing hardware complexity is not always sufficient and one
should also consider the communication space when assessing how complex a hardware
system is.

As before, the communication complexity function can be generalised as a stan-
dard polynomial of degree n.

The notion of taking the hardware complexity analysis beyond simple statistics
by relating those statistics to underlying hardware system inputs, outputs and con-
figurations is important. By doing so, one can understand and hopefully manage the
complexity of the system in an informed manner. The State-Space Complexity and
Communication-Space Complexity are two aspects that reflect how complex a state
machine is. In the model-checking environment these are crucial to:

• seeing precisely how processes are dependent on each data-type which helps
to avoid unnecessary complexities and dependencies introduced by unwanted
functional complications;

• helping engineers and scientists to understand how the CSP description is re-
lated to the underlying state machine objects and how to use CSP to produce
optimal designs and state machines;

• enabling the model-checker to statically estimate the complexity of the veri-
fication problem. This could be translated into an estimate of the run-time
and memory requirements of the problem. Subsequently a decision (possibly
assisted by the user) can be made whether to proceed with the task or not;

• enabling better benchmarking of model-checking abstractions, algorithms and
technologies. For this to be possible, standards are needed for various aspects of
the model-checking technology, from modelling interfaces and languages through
complexity analysis and benchmarking; and

• helping engineers and scientists to understand how model-checkers work in gen-
eral.

64



Other aspects related to a specific model-checker might not be so obvious, but
could be informative as to the complexity of the model-checking algorithm. For
example, the acceptance and refusal sets which represent some of the state variables
computed by FDR for performing the required verification tasks might also shed some
light on the complexity of the model-checking algorithm, but not necessarily on the
complexity of the actual models being checked. Different model-checkers typically
have other factors of interest.

However, because abstract state machines of the form of states and transitions are
the common mathematical (or formal) model underlying all model-checkers and also
hardware design and implementation techniques, analysing their complexity is seen
as the one and only aspect that could be considered universal for analysing hardware
complexity.

4.4.3 Asymptotic Analysis of Space Complexity

When modelling digital systems in CSP, such as the one discussed in Section 4.6.2.1 or
a Compiler, such as the one described by Roscoe [Chapter 18, 38], it is very plausible
to express the system complexity in terms of the size of a data-type or the number
of shared variables. Suppose the system complexity is to be analysed in terms of a
data-type called Integer. Let S be the size of the Integer data-type in bits. Typically,
model-checking algorithms would verify the system with respect to all possible values
of each variable in the system. In that case, the system would be dependent on the
total number of possible values that can be represented in such a data-type. But
because S is the total number of bits an Integer can have, then the total number of
values represented by an Integer is 2S. Hence the complexity polynomial becomes of
exponential nature:

ExpComplex(S) = c0 + c1 × 2S + c2 × 22×S + . . .+ cn × 2n×S (4.8)

Then the asymptotic complexity of Eqn. 4.8 would be ExpComplex(S) ∈ O(2n×S).
Because the above asymptotic complexity of Eqn. 4.8 is of exponential nature,

it is only practical to analyse and verify the system for small values of S. This will
become apparent in Section 4.6.2.1. In such cases, it might also be worth considering
the whole complexity function in Eqn. 4.8 instead of its asymptotic behaviour only.
This is because the sum c0 + c1×2S + c2×22×S + . . .+ cn−1×2(n−1)×S might be larger
than the asymptotic aspect itself (cn × 2n×S) for small values of S.
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Both the full complexity function for small n, as well as the asymptotic aspect
will be analysed in the case study in Section 4.6.2.1.

The size of the state space and communication space is an objective, abstract and
stand-alone metric that is useful for analysing state machine complexity. Using such
analyses, conclusions could be made about the run-time, memory requirements or
possibly other dependent, but subjective, aspects. These conclusions could be made
about different implementation and verification techniques, in addition to model-
checking. In the analysis of hardware systems, other aspects of relevance include
chip-area and power consumption of the underlying hardware. It would be very
interesting to reflect on such aspects, possibly by extending the above complexity
analysis to include multiple configuration parameters or possibly different metrics.

4.5 Complexity Metrics In Practice

In order to analyse the complexity of a process, various communications between
FDR (instantiated as a Tool Command Language (TCL) server) and FDRlei take
place. These communications involve compiling and explicating a process to estab-
lish its transitions. The transitions are then used for finding the state-space and
communication-space metrics of the process. This procedure is then repeated itera-
tively by changing the configuration parameter under scrutiny according to a set of
prefixed values. Finally, the generated metrics are processed by an equation solver
to establish the coefficients of Eqn. 4.8. Further information about the process of
driving the equation solver are discussed in Section 4.6.

The iterative process of producing the needed metrics was proving costly as pro-
cess sizes grew (beyond 3× 105 states). It was observed that the time spent by FDR
was growing unexpectedly large for such relatively small systems. This necessitated
further investigation to identify the reasons behind the performance degradation ex-
perienced by FDR. This included performance profiling and usage model analysis of
internal data structures as follows.

First FDR was built with profiling enabled. Then, by using TCL scripting to build
the refinement checks step by step, an implementation process and a specification
process were compiled into two ISM objects. Then those two processes were used
to construct the object describing the check or assertion to be carried out. In FDR,
this is called a hypothesis object [18]. Finally, the check is performed using the assert
function which is part of the hypothesis object.
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These performance experiments revealed that most of the CPU time was spent
in this assert function. In other words, the time spent in the compilation of the
CSP script into the needed ISM objects and the construction of the hypothesis object
was negligible. The experiments also revealed that most of the time was spent in
the fdr2tix front end application and the state2 server of the FDR tools chain had
minimum performance overhead.

The profiling results revealed that even for reasonable size systems (i.e. processes
with 5× 107 transitions) the performance profile of fdr2tix was alarming.
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Figure 4.2 FDR Performance Profile

Figure 4.2a shows an extract of the information obtained by profiling the fdr2tix
executable: the part of FDR tools chain which was the most CPU-intensive during
the verification of an assertion of the following form:

TOCKS vFD IMPLEMENTATION \ (Σ 8{tock}) (4.9)

where:

TOCKS = tock → TOCKS (4.10)
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and the IMPLEMENTATION process had about 5 × 107 transitions. More details
about CSP assertions will be discussed in Chapter 7.

Figure 4.2a shows that 86% of the time was spent in a single function namely:

Set::add singleton(. . .) (4.11)

Further source-code analysis revealed that the Set::add singleton function in
Eqn. 4.11 is a generic set creation and manipulation algorithm. It was used by the
process explication procedure: a procedure that enumerates the process by tabulating
the transition system rather than deducing the operational semantics on the fly. This
is supposed to make subsequent manipulation faster [18]. However, this procedure
assumed that the enumerated states form an unordered set. Each time a new state
was added to the set, a search was performed to find its position in the set before
adding it. The complexity of this search and place algorithm for adding a single
item was O(N3), where N is the cardinality of the set being expanded. Practically,
the relative performance of this algorithm to the whole verification process increased
drastically as the size of the set increased, as evident from Figure 4.2a.

For this reason an optimised set creation and manipulation mechanism was im-
plemented and integrated into FDR. It takes into account that the enumerated set
of states representing a state machine is an ordered one. By keeping a pointer to the
last item in the set, the complexity of the whole expansion process becomes O(1) and
the overhead of expanding the set (i.e. the Set::add singleton function) disappears
completely from the execution profile, as evident in Figure 4.2b.

Professor A. W. Roscoe of Oxford University’s Computing Laboratory (current
maintainers of FDR) has been made aware of this possible optimisation to FDR.
Professor Roscoe reported in April 2012 that they “are presently planning FDR3:
intended to be a complete rewrite”.

The implemented optimisation resulted in vast performance improvements as
demonstrated by Table 4.2.

The change was tested using a regression of 372 different assertions and the re-
sults were consistent with the unoptimised version. The regression consisted of 62
functional and performance checks performed on the communication system being
developed. These checks were performed iteratively using a set of 6 different configu-
rations. Table 4.2 shows a summary of the real-time execution results for 4 of those
iterations along with the size of the IMPLEMENTATION process for each iteration.

Those improvements are presented here for the following two reasons.
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Implementation
States Transitions

Before
(Sec)

After
(Sec)

Improvement
(Factor)

353264 1842544 100 38 2.6
1669088 8887008 1842 249 7.4
9154496 49591744 452002 2358 191.7
57302912 320169014 46 years2 9 hours 45323.0

Table 4.2 FDR Performance Optimisation Summary

2Corresponds to predicted rather than real performance figure.

1. To highlight the fact that the case study in Section 4.6.2.1 was greatly facilitated
by those optimisations. This is because it involved a large number of iterative
compilation and metrics extraction.

2. To give strong evidence that time and space performance metrics extracted from
the model-checker are not objective for assessing the complexity of the formal
model.

As evident from Table 4.2, the impact of the optimisations increases rapidly as
the size of the system increases. These optimisations enabled FDR to model-check
much larger systems than was previously possible.

Finally, the performance improvements made to FDR were also very useful in
Chapter 7, where functional and performance refinement checks were performed on
multiple large-scale processes.

4.5.1 Future Work

Future optimisation work includes:

1. Further analysis and optimisations of large sets. In particular the structure
of these sets and their unsorted expansion/access scenarios. The optimisation
discussed in this section avoids the use of the Set::add singleton function in a
specific case. However, the function is still available and is being used in other
cases. It might be worth optimising it for the general case of an unordered set
expansion.

2. Analysis of the performance impact of the TCL interface. It is predicted that
performance gain would result from integrating all the functionality offered by
FDR and the FDRlei plug-in into a single compiled application, as suggested
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by Prechelt [63]. Doing so would eliminate the need to go through many layers
of function calls and programming abstractions (C++ application, TCL scripts,
Linux system calls, . . . ) to reach the fdr2tix executable.

4.6 Automated Solving of Complexity Equations

As discussed in Section 4.4, the ability to assess the complexity of CSP processes
through analysing the complexity of the associated state machines is essential for
producing efficient and verifiable models. This has been made clear in Chapter 3 and
also earlier in this chapter.

In the absence of a built-in solution in the model-checker, an alternative approach
to developing the complexity polynomials would involve the iterative collection of the
desired metrics (i.e. number of states or number of transitions) from the model-checker
by varying the desired definition or variable (i.e. DS in Eqn. 3.44 or DI in Eqn. 3.78)
and subsequently establishing the mathematical relation between the collected metrics
and the associated variable.

Establishing the relation could be performed manually by searching for the c0, c1,
c2, . . . , cn coefficients of Eqn. 4.8 for simple state machines like the ones in Section 4.1.
Another mechanism to finding those coefficients would involve fitting a curve to the
experimental data (state machine metrics in this case) using automated curve fitting
algorithms. This section describes the use of such algorithms for finding the exact
solution to the complexity equations of the CSP processes presented in Chapter 3.

4.6.1 Background

Optimisation or curve fitting algorithms describe a field of mathematics with a set
of algorithms that are used to relate collected experimental data to a mathematical
formula. This is done through the optimisation of a target formula using a set of
constraints and target variables [64].

The specific algorithm used depends largely on the analysed data and the associ-
ated mathematical formula. For example, the simplex algorithm is suitable for solving
linear problems. The field of solving optimisation problems, where the objective func-
tion or target formula is not linear is called nonlinear programming (NLP). Several
algorithms can be used in solving nonlinear problems, including the Gauss-Newton,
the Marquardt-Levenberg, the Nelder-Mead and the steepest descent method [65].
Lasdon et al. [66], on the other-hand, describe a robust, efficient and easy-to-use
NLP algorithm called the Generalised Reduced Gradient algorithm (GRG). Lasdon
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et al. focus on software implementation, rather than on the mathematical properties
of the algorithm. An exponential formula such as Eqn. 4.8 is a typical nonlinear
problem that could be solved using the GRG algorithm.

A well established optimisation software is the Excel Solver, in which D. Fylstra
et al. [67] implement a number of optimisation algorithms including the Simplex LP,
GRG and Evolutionary methods, some of which are only available under commer-
cial licence. The design and use of the Excel Solver along with its interface is well
documented by Fylstra et al. [68]. This section discusses the experiments performed
in solving the state machine complexity formulae using the Excel Solver, which is
bundled with MicrosoftExcel. The discussion will address the practical aspects
of applying the algorithm to solving the required complexity formulae including the
options used, some observations and implemented modifications to the algorithm.

4.6.2 Equation Solver Using the GRG Algorithm

Fylstra et al. [68] explain curve fitting as the act of expressing the experimental
data as a mathematical equation in the form y = f(x), where x is the independent
variable which is controlled by the experimenter; y is the dependent variable which
is measured; and f is the function, which includes one or more parameters used to
describe the data.

In the case of the complexity equation described in Section 4.4 and the models
discussed in Section 3.4, the DataSize or DS has been chosen as the independent
variable for the analysis. This is due to the reasons already discussed in Section 3.6.
As the models presented were refined further, other independent variables of interest
came to exist. The discussion in this chapter shall be limited to the analysis of the
DS independent variable.

The state machine metrics considered for analysis as dependent variables were:

1. Events (E): total number of unique events.

2. States (S): total number of states.

3. Transitions (T): total number of all transitions.

The spreadsheets were constructed by initialising all c0, c1, c2, . . . , cn in Eqn. 4.8
using initial estimates and a sufficiently large n. In analysing the complexity of the
models discussed in this chapter, values of n > 3 were never observed, hence n = 5

was deemed sufficiently large.
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Sub SolveOnce(ChangeRange)

SolverReset
SolverOptions MaxTime :=100, iterations :=1000 , Precision :=0.000001 , _

AssumeLinear :=False , StepThru :=False , Estimates :=1, _
Derivatives :=1, SearchOption :=1, IntTolerance :=5, _
Scaling :=False , Convergence :=0.0001 , AssumeNonNeg :=False

SolverAdd CellRef :=Range(Cells(F, FS), Cells(F, n + 1)), _
Relation :=3, FormulaText :="0"

SolverOk SetCell :=Cells(D, SS), MaxMinVal :=2, ValueOf :="0", _
ByChange := ChangeRange

SolverSolve True

End Sub

Listing 4.1 Standard GRG Routine

In a typical solving scenario, the initial ci values would be estimated before starting
the GRG algorithm. However, since the initialisation procedure was to be used as
part of an automated process to solve all the complexity equations for all the desired
processes, all ci values were initialised to 1.

By varying DS according to the collected data, the formulae for the predicted met-
rics were constructed and the initial values of the predicted metrics were calculated.

Once all the initial values had been calculated, the error differences for all values
could be calculated and the target cell for optimisation could be defined as the sum
of error squares SS for all data points:

SS =
DSmax∑
i=1

(Metricm −Metricp)
2 (4.12)

where Metricm is the measured value for the metric as reported by FDR and
Metricp is the predicted value for the metric using the complexity formula.

Bowen and Jerman [69] describe the initialisation process in detail. This initiali-
sation process has been implemented as a V isual Basic macro, which is attached in
Appendix A.

Various options to the solving algorithm have been considered. The solving routine
along with the constraints used are defined in Listing 4.1 where:

• D is the error differences row;

• SS is the column number of the values calculated by Eqn. 4.12;

• F is the row number of where the factors (ci) are defined;
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• FS is the starting column for the factors; and

• n is the total number of factors.

In Listing 4.1, command lines ending with are continued on the next line. By
default, all n factors are allowed to be changed by the GRG algorithm, hence:

ChangeRange = Range(Cells(F,FS), Cells(F, n+ 1)) (4.13)

Finally, the routine defines constraints on the ci factors and the predicted metrics
to be positive at all times.

It was observed that the best results were obtained by setting all ci factors to zero.
See Appendix A for full Visual Basic code including the initialisation procedure.

4.6.2.1 Case Study: Complexity of the Multiplexing Approach

In this section, the GRG algorithm discussed earlier is used to develop and analyse
the complexity formulae of the processes presented in Section 3.4.

The independent variable used is DS: the logarithm of the size of the DataWord
set in Eqn. 3.35 to the base 2.

Table 4.3 shows the results of applying the GRG solving procedure for all the
essential processes in Section 3.4. The table shows the metrics as obtained from
FDR, the predicted metrics using the solution obtained from the Solver, and the
error values squared (Metricm −Metricp)

2. The table also shows the optimised SS

results which were the target for optimisation.
Table 4.4 shows the factors of the complexity equations to all the processes in

Table 4.3.
It is clear from Table 4.3 that, only in a few cases, the solver was able to find

the exact complexity formulae and hence the optimised SS result was negligible. For
example, the optimised SS for the STC process was between 1.42E-05 and 4.98E-04.
In all other cases, the optimised SS was considered not negligible and hence required
further investigation. In the case of the transitions solution of the DDC process, the
result is alarming, since the SS optimisation target was considerably large (1.37E+04).

Looking at Table 4.4, it is clear that some of the produced multiplicands have
very small (and negligible) values. For example, almost all the values for the 24×DS

multiplicand had values smaller than 1E-6. In those cases, the complexity equations
are assumed to be of order less than 4, but the GRG algorithm is unable to reach
that conclusion and hence it always produces a small residual value for the 24×DS

multiplicand of the complexity equation. This was the motivation for the next section.
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Table 4.3 Predicted Metrics and Error Using Standard GRG Solver
DataSize (DS) 1 2 3 4 5 6 7 8 SS

Measured 12.00 20.00 36.00 68.00 132.00 260.00 516.00 1028.00
Predicted 8.26 16.51 33.04 66.14 132.72 270.08 605.52 2221.24Events

Error2 14.02 12.15 8.75 3.44 0.52 101.55 8013.48 1.4E+06 3.89E+01
Measured 13.00 17.00 25.00 41.00 73.00 137.00 265.00 521.00
Predicted 4.65 9.29 18.59 37.20 74.50 149.38 300.26 606.53States

Error2 69.79 59.40 41.08 14.41 2.26 153.27 1243.37 7315.16 1.87E+02
Measured 20.00 32.00 56.00 104.00 200.00 392.00 776.00 1544.00
Predicted 12.52 25.04 50.10 100.30 201.43 413.12 977.52 4323.77

ISA

Trans.
Error2 55.98 48.45 34.85 13.72 2.05 446.26 40608.78 7.7E+06 1.55E+02

Measured 20.00 36.00 68.00 132.00
Predicted 20.00 36.00 68.00 132.00Events

Error2 0.00 0.00 0.00 0.00 1.42E-05
Measured 50.00 252.00 1496.00 10032.00
Predicted 50.00 252.01 1496.02 10032.00States

Error2 0.00 0.00 0.00 0.00 4.98E-04
Measured 146.00 892.00 6104.00 44848.00
Predicted 146.01 892.01 6103.99 44848.00

STC

Trans.
Error2 0.00 0.00 0.00 0.00 1.16E-04

Table 4.3 Continued ↓

74



DataSize (DS) 1 2 3 4 5 6 7 8 SS

Measured 17.00 31.00 59.00 115.00 227.00 451.00
Predicted 14.14 28.28 56.58 113.27 227.64 469.87Events

Error2 8.19 7.40 5.87 2.99 0.41 356.13 2.49E+01
Measured 20.00 46.00 122.00 370.00 1250.00 4546.00
Predicted 18.62 45.09 121.84 370.61 1249.96 4546.97States

Error2 1.90 0.82 0.03 0.37 0.00 0.95 3.12E+00
Measured 47.00 141.00 473.00 1713.00 6497.00 25281.00
Predicted 25.48 101.94 407.76 1631.03 6524.11 26096.45

DDC

Trans.
Error2 462.90 1525.74 4256.65 6719.41 735.06 664954.86 1.37E+04

Measured 10.00 16.00 28.00 52.00 100.00 196.00 388.00 772.00
Predicted 6.27 12.54 25.08 50.21 100.70 204.24 447.42 1492.23Events

Error2 13.93 11.99 8.50 3.20 0.49 67.82 3531.18 518730.48 3.81E+01
Measured 6.00 12.00 24.00 48.00 96.00 192.00 384.00 768.00
Predicted 5.97 11.95 23.90 47.82 96.02 198.15 493.32 2533.95States

Error2 0.00 0.00 0.01 0.03 0.00 37.83 11950.48 3.1E+06 4.71E-02
Measured 12.00 32.00 96.00 320.00 1152.00 4352.00 16896.00 66560.00
Predicted 4.53 18.11 72.46 289.82 1159.30 4637.19 18548.76 74195.03

PHY

Trans.
Error2 55.82 192.82 554.32 910.57 53.25 81332.97 2.7E+06 5.8E+07 1.77E+03

Table 4.3 Continued ↓
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DataSize (DS) 1 2 3 4 5 6 7 8 SS

Measured 5.00 7.00 11.00 19.00
Predicted 4.93 6.94 10.96 19.01Events

Error2 0.01 0.00 0.00 0.00 1.02E-02
Measured 308.00 1648.00 9920.00 66304.00
Predicted 308.00 1648.00 9920.00 66304.00States

Error2 0.00 0.00 0.00 0.00 5.07E-06
Measured 1300.00 10256.00 101440.00 1.2E+06
Predicted 1321.58 10245.77 101442.21 1.2E+06

SYSTEM

Trans.
Error2 465.90 104.58 4.90 0.01 5.75E+02

Table 4.3 Predicted Metrics and Error Using Standard GRG Solver
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Multiplicand 1 2DS 22×DS 23×DS 24×DS

Events 5.47E-04 4.13E+00 3.62E-04 0.00E+00 2.66E-07
States 3.42E-04 2.32E+00 1.83E-04ISA

Transitions 8.29E-04 6.26E+00 5.24E-04 0.00E+00 6.26E-07
Events 4.00E+00 8.00E+00 0.00E+00 0.00E+00 1.93E-07
States 0.00E+00 3.00E+00 7.00E+00 2.00E+00 1.60E-07STC

Transitions 0.00E+00 3.01E+00 1.50E+01 1.00E+01 4.13E-07
Events 9.15E-04 7.07E+00 5.03E-04 0.00E+00 9.23E-07
States 8.95E-02 7.28E+00 9.92E-01 4.15E-08 1.07E-06DDC

Transitions 8.03E-09 2.17E-07 6.37E+00
Events 4.24E-04 3.13E+00 2.63E-04 0.00E+00 1.57E-07
States 3.85E-04 2.99E+00 4.49E-08 3.94E-07 4.10E-07PHY

Transitions 1.46E-09 3.88E-08 1.13E+00
Events 2.92E+00 1.01E+00 3.28E-05 8.13E-07
States 0.00E+00 0.00E+00 5.10E+01 1.30E+01 2.83E-06SYSTEM

Transitions 0.00E+00 3.99E+01 9.38E+01 8.25E+01 1.29E+01

Table 4.4 Complexity Factors Using Standard GRG Solver

The asymptotic complexity of solving a single complexity equation, as demon-
strated in this section, is equal to the complexity of the GRG algorithm. The com-
plexity of the initialisation procedure is of O(DS×n), which is negligible.

Using a computer with 8 GB RAM and an Intel Core i7 running at 1.6 GHz,
it took 0.45 of a second to run the GRG initialisation and solving procedure once.
Running the procedure 15 times for producing all the results in Tables 4.3 and 4.4
took 4.59 seconds.

4.6.3 Modified Iterative GRG Algorithm

The generic GRG solving routine in Listing 4.1 was used for solving all the observed
complexity metrics and equations. For this reason, the generic complexity formulae
used by that routine was of order 5, which was deemed sufficiently large as explained
earlier. However, it was noticed that for many of the solved equations the highest
order multiplicand to the complexity equations produced by the GRG algorithm al-
ways had a very small and negligible value. This meant that the associated equation
must be of lower order and that the ChangeRange to the GRG Solver in Listing 4.1
must be adjusted accordingly.
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Sub RoundAndSolve ()

Dim iToRound As Double

For c = n + (FS - 1) To FS Step -1

Call SolveOnce(Range(Cells(F, FS), Cells(F, c)))

iToRound = ActiveSheet.Cells(F, c).Value
Cells(F, c). Select
ActiveCell.FormulaR1C1 = Round(iToRound , 0)

Next c

End Sub

Listing 4.2 Iterative GRG Routine

It was also noticed that many of the produced multiplicands had a small fraction
below or above an integer. This has resulted in similar fractions in the associated
predicted metrics. Practically, this cannot be the case, since the measured metrics
were always integers.

For these reasons, an iterative RoundAndSolve routine was implemented as il-
lustrated in Listing 4.2. It uses the SolveOnce GRG routine defined in Listing 4.1
iteratively as follows: the highest order factor is rounded to integer value before an-
other iteration of the GRG procedure was started. In the next iteration, the factor
rounded in the previous iteration would be fixed and not allowed to be modified by
the GRG algorithm. In the case of a highest order multiplicand with a very small
value, this rounding operation would reduce it to zero and subsequently the order of
the associated complexity equation is reduced.

The iterative operation is performed a number of times that is equal to the order
of the analysed complexity equation (number of multiplicands, n in this case). All
the multiplicands by the end of this procedure must have integer values.

4.6.3.1 Updated Complexity Results of the Case Study

Using the iterative GRG algorithm in Listing 4.2, the analysis of the complexity
equations for all the processes modelled in Section 3.4 was repeated except this time
with more decisive results.

Similar to Table 4.3, Table 4.5 shows the updated results: the metrics as obtained
from FDR, the predicted metrics using the iterative procedure above and the error
values squared. Table 4.5 also shows the final SS values for all the analysed complexity
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equations, and this time the algorithm worked perfectly and all error values were zero.
In practice, the modified algorithm was able to produce the same results for all the
analysed processes using only four measured values of the metric. For this reason
Table 4.5 displays results for up to DS = 4, in comparison with Table 4.3, which
displayed the results for up to DS = 8.

From the practical experiments performed it was observed that the algorithm
was able to produce the complexity factors of an equation of complexity O(23×DS),
using a minimum of three data points. Additional data points did not affect the
calculated complexity equation. Similarly, the algorithm was able to find a solution
(optimising SS to zero) for an equation of complexity O(24×DS), using a minimum
of four data points. An example of this are the transitions metrics of the SYSTEM

process demonstrated in Table 4.6, which were the metrics with the highest complexity
in this case study.

Another observation is the fact that the algorithm was able to produce precise
complexity equations, since the underlying models were all monotonically and ex-
ponentially growing as DS grew. For precise results, it was also noticed that the
growth should be uniform according to one exponential formula and there should
be no special cases where the processes behaved differently for specific DS values or
ranges.

Table 4.6 shows the multiplicands of all the complexity equations for all the analy-
sed processes. One can now assess the complexity results with the confidence that it
truly represents the underlying state machines of the CSP processes.

The final State-Space Complexity and Communication-Space Complexity formulae
for selected processes (PHY, DDC and the top-level SYSTEM process) as extracted
from Table 4.6 are shown in Eqns. 4.14 to 4.19.

DDCSComplex(DS) = 2 + 7× 2DS + 1× 22×DS (4.14)

DDCCComplex(DS) = 1 + 11× 2DS + 6× 22×DS (4.15)

PHYSComplex(DS) = 3× 2DS (4.16)

PHYCComplex(DS) = 4× 2DS + 1× 22×DS (4.17)

SYSTEMSComplex(DS) = 51× 22×DS + 13× 23×DS (4.18)

SYSTEMCComplex(DS) = 113× 22×DS + 80× 23×DS + 13× 24×DS (4.19)

The complexity of the iterative GRG algorithm described in Listing 4.2 is:

n× Complexity(GRG) (4.20)
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Table 4.5 Predicted Metrics and Error Using Iterative GRG Solver
DataSize (DS) 1 2 3 4 SS

Measured 12 20 36 68
Predicted 12 20 36 68Events

Error2 0 0 0 0 0
Measured 13 17 25 41
Predicted 13 17 25 41States

Error2 0 0 0 0 0
Measured 20 32 56 104
Predicted 20 32 56 104

ISA

Trans.
Error2 0 0 0 0 0

Measured 20 36 68 132
Predicted 20 36 68 132Events

Error2 0 0 0 0 0
Measured 50 252 1496 10032
Predicted 50 252 1496 10032States

Error2 0 0 0 0 0
Measured 146 892 6104 44848
Predicted 146 892 6104 44848

STC

Trans.
Error2 0 0 0 0 0

Measured 17 31 59 115
Predicted 17 31 59 115Events

Error2 0 0 0 0 0
Measured 20 46 122 370
Predicted 20 46 122 370States

Error2 0 0 0 0 0
Measured 47 141 473 1713
Predicted 47 141 473 1713

DDC

Trans.
Error2 0 0 0 0 0

Table 4.5 Continued ↓
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DataSize (DS) 1 2 3 4 SS

Measured 10 16 28 52
Predicted 10 16 28 52Events

Error2 0 0 0 0 0
Measured 6 12 24 48
Predicted 6 12 24 48States

Error2 0 0 0 0 0
Measured 12 32 96 320
Predicted 12 32 96 320

PHY

Trans.
Error2 0 0 0 0 0

Measured 5 7 11 19
Predicted 5 7 11 19Events

Error2 0 0 0 0 0
Measured 308 1648 9920 66304
Predicted 308 1648 9920 66304States

Error2 0 0 0 0 0
Measured 1300 10256 101440 1208576
Predicted 1300 10256 101440 1208576

SYSTEM

Trans.
Error2 0 0 0 0 0

Table 4.5 Predicted Metrics and Error Using Iterative GRG Solver

where n is the number of multiplicands or factors in the complexity equation. The
complexity of the initialisation procedure is still of O(DS×n), which has negligible
asymptotic effects.

Setting n = 5 and using the same computer as in the previous section (8 GB RAM
and an Intel Core i7 running at 1.6 GHz), it took 1.59 seconds to run the iterative
GRG routine once. Running the routine 15 times for producing all the results in
Tables 4.5 and 4.6 took 21.84 seconds.

4.7 Evaluation

It is now possible to perform an abstract complexity review of both the building blocks
as well as the top-level system using the respective complexity formulae. These formu-
lae and their asymptotic behaviour allow the reflection on the complexity semantics
of different CSP operators and their effect on the complexity of the system. Moreover,
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Multiplicand 1 2DS 22×DS 23×DS 24×DS

Events 4 4
States 9 2ISA

Transitions 8 6
Events 4 8
States 0 3 7 2STC

Transitions 0 3 15 10
Events 3 7
States 2 7 1DDC

Transitions 1 11 6
Events 4 3
States 0 3PHY

Transitions 0 4 1
Events 3 1
States 0 0 51 13SYSTEM

Transitions 0 0 113 80 13

Table 4.6 Complexity Factors Using Iterative GRG Solver

it is also possible to perform targeted optimisations to reduce the complexity of the
associated hardware models.

The asymptotic behaviour of the building blocks as well as the top-level SYSTEM

process is presented in Table 4.7. The table shows that the Communication-Space
Complexity is not necessarily the same as the State-Space Complexity ; the PHY

process is an example of this observation.

Process ISA STC DDC PHY SYSTEM

SComplex(DS) ∈ O(21×DS) O(23×DS) O(22×DS) O(21×DS) O(23×DS)

CComplex(DS) ∈ O(21×DS) O(23×DS) O(22×DS) O(22×DS) O(24×DS)

Table 4.7 Asymptotic Aspect of the Complexity Formulae

The analysis of the CSP specifications in light of the above complexity formulae
reveals some interesting observations about the semantics of some CSP operators with
respect to the associated state machine complexity. For example, the STC process
had at most three state variables of DataWord type. This is expected to be the reason
behind its asymptotic complexity (both SComplex and CComplex ) being O(23×n).

Both Table 4.7 and Eqns. 4.16 to 4.17 show that even though the associated CSP
model of the PHY process is using a Boolean subset of the DataWord set for basic data
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communication, the resultant state machine is still dependent on the whole DataWord
set and its associated DS variable. This is predicted to have a negative effect on the
complexity of the DDC and STC processes as well. For example, Eqns. 4.14 to 4.15
show that the DDC process is even more dependent on DS than the PHY process,
even though this is not obvious from the CSP description.

Finally, Eqns. 4.18 to 4.19 show precisely how the top-level SYSTEM process will
grow as the value of DS grows. The equations show that the SYSTEM will grow to
about 2× 108 states and 6× 1010 transitions using only 8 bit data-type. This is both
informative and alarming, taking into account the minimal set of modelled functions.

The complexity analysis of the modules was very useful. It exposed the overhead
of using a single and global data-type to communicate time, control and data infor-
mation. This is evident by the strong dependence of each process analysed on that
data-type.

4.7.1 Complexity-Based Targeted Optimisation

Now let us look closely at the PHY process in Eqn. 3.61. Its communication com-
plexity in Table 4.7 is O(22×DS), while its predicted complexity is O(1) and it should
be totally independent of the DS variable. Its state variable (opValue) stores the
state of the port and must be limited to Boolean values since it is only changed in
Eqn. 3.63. However, by looking at Figure 3.6 closely, it can be seen that all values
from the set DataWord are being used to update the state variable opValue through
the statement:

2 ∀npv ∈ Boolean⇒ rPHY.Braw .Cdata?npv → PHY ′(npv) (4.21)

This means that the condition ∀npv ∈ Boolean has no effect on limiting the com-
munications on the associated rPHY.Braw .Cdata channel and the “?” input operator
still allowed the full DataWord set to be input.

By changing the “?” input operator to the standard “ .” (“dot”) operator in the input
statement (Eqn. 3.63), the intended behaviour is observed and communications on the
rPHY.Braw .Cdata channel are now limited to the Boolean subset of the DataWord
set as follows:

2 ∀npv ∈ Boolean⇒ rPHY.Braw .Cdata .npv → PHY ′(npv) (4.22)

This observed behaviour of the “?” input operator is thought to be an issue with
FDR and its compilation process, rather than with the CSP description of Eqn. 3.63.
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Table 4.8 shows the updated measured metrics only. This is because, similar to
the results in Table 4.5, the metrics are identical to the predicted metrics calculated
by the iterative GRG algorithm and all error values were zero.

DataSize (DS) 1 2 3 4
Events 12 20 36 68
States 13 17 25 41ISA

Transitions 20 32 56 104
Events 20 36 68 132
States 50 252 1496 10032STC

Transitions 146 892 6104 44848
Events 17 31 59 115
States 20 46 122 370DDC

Transitions 47 141 473 1713
Events 10 10 10 10
States 6 6 6 6PHY

Transitions 12 12 12 12
Events 5 5 5 5
States 308 776 2192 6944SYSTEM

Transitions 1300 3352 9712 31456

Table 4.8 Metrics After Complexity Targeted Optimisations

Table 4.9 shows the updated multiplicands to all the complexity equations and
Table 4.10 shows the updated asymptotic behaviour of all the processes.

As evident from both Tables 4.9 and 4.10, a small change, such as the selection
of two seemingly equivalent CSP operators, has reduced the complexity of the PHY

process to O(1). This in turn had the desired effect on the complexity of the top-
level SYSTEM. Its state and communication complexities have now been reduced to
O(22×DS).

The examples and results presented in this section are only intended to demon-
strate the usefulness of applying innovative complexity analysis to CSP processes and
associated state machines. The procedure has been applied to various other bottle-
necks in the system. For example, similar to the PHY process, the DDC process as
demonstrated in Eqn. 3.55 was also expected to be independent of the DS variable.
Also, the STC process has an unexpectedly large complexity which is even greater
than the complexity of the top-level SYSTEM, as can be seen in Table 4.9. This
issue has been addressed through fine-tuning the communication sets on the lDDC,

84



Multiplicand 1 2DS 22×DS 23×DS

Events 4 4
States 9 2ISA

Transitions 8 6
Events 4 8
States 0 3 7 2STC

Transitions 0 3 15 10
Events 3 7
States 2 7 1DDC

Transitions 1 11 6
Events 10
States 6PHY

Transitions 12
Events 5
States 0 114 20SYSTEM

Transitions 0 462 94

Table 4.9 Factors After Complexity Targeted Optimisations

Process ISA STC DDC PHY SYSTEM

SComplex(DS) ∈ O(21×DS) O(23×DS) O(22×DS) O(1) O(22×DS)

CComplex(DS) ∈ O(21×DS) O(23×DS) O(22×DS) O(1) O(22×DS)

Table 4.10 Asymptotic Aspect of the Optimised Complexity Formulae

rDDC, lSTC and rSTC channels. The details of this step were omitted for brevity
since they did not affect the complexity of the top-level SYSTEM process.

It has been observed that the complexity of the top-level SYSTEM process is not
necessarily larger than the complexity of its most complex building block as evident
from Table 4.7: the complexity of the STC process is O(23×DS), while the complexity
of the SYSTEM process is O(22×DS).

Table 4.11 demonstrates the improvements to the metrics of the top-level system
process. The improvements increase drastically as DS increases. An improvement of
3842% for the transitions metrics when DS = 4 is indeed a significant improvement.

The improvements shown in Table 4.11 were further analysed by relating them
mathematically to DS using the iterative GRG algorithm described earlier. Eqn. 4.23
shows that the improvements in the number of transitions are increasing exponentially
as the data size increases.
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SYSTEM before SYSTEM after Improvements(%)Data
Size States Transitions States Transitions States Transitions

1 308 1300 308 1300 0 0
2 1648 10256 776 3352 212 305
3 9920 101440 2192 9712 452 1044
4 66304 1208576 6944 31456 954 3842

Table 4.11 Improvements to Metrics of Optimised SYSTEM

TransitionsImprovement%(DS) = 16× 2DS + 14× 22×DS (4.23)

This fact can also be evident in the change to the communication complexity of the
SYSTEM process, which was of O(22×DS). This has great impact on the scalability
of the system.

Let us now assume that the maximum number of transitions that FDR can cur-
rently handle is 5 × 108 transitions. This is a realistic assumption, since the largest
observed process during the development of this framework had about 3.2×108 tran-
sitions as shown in Table 4.2, which needed about 9 hours to verify. Figure 4.3
demonstrates this aforementioned assumption along with the expected growth in the
number of transitions for the SYSTEM process before and after optimisation. The
demonstrated growth is according to the developed complexity formulae in Tables 4.6
and 4.9.

Figure 4.3 shows that FDR is able to verify an unoptimised version of the
SYSTEM with a maximum DS value of 6. This figure almost doubles to 11 after
optimisation. The figures discussed here are for illustration purposes, since the ulti-
mate goal from performing these complexity analyses is to improve the scalability of
the system and address any complexity overhead added by the modelling language,
the architecture of the modelled system or the verification tools.

4.8 Summary and Conclusions

The conclusions of this chapter are twofold: first, the development of objective com-
plexity analysis techniques for analysing the complexity of various modelling ap-
proaches. Second, and through the use of the case study, this chapter provides great
insight on the complexity of the multiplexing approach that was presented in Chap-
ter 3.
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Figure 4.3 Transitions vs. DataSize for the SYSTEM Process

4.8.1 Complexity Analysis Conclusions

The techniques described in this chapter enable the complexity of state machines and
formal models to be analysed in terms of configuration parameters, state variables, or
data-types. These are highly valuable techniques in the design of efficient hardware
architectures, which includes the design of functionally independent hardware blocks.
It is also essential for managing the space explosion problem.

By using the right analysis tools, it may be possible to transform a non-optimal
design with unrealistic complexity explicitly to a much simpler design with more
optimal state space. Furthermore, by establishing properties and checks about the
optimal design, similar properties can be concluded about the non-optimal one. For
example, if the non-optimal design was ∈ O(S10) and the optimal one was ∈ O(S5),
one can achieve the verification of the non-optimal design by verifying the optimal
one.

Finally, as it turned out, analysing the complexity of the compiled state machines
is a useful mechanism for objective analysis of the modelling and verification formal-
ism itself and any associated compilation or compression algorithms.
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4.8.2 Multiplexing Approach Conclusions

Through the complexity analysis of the case study discussed in Section 4.6.2.1, the
following observations were made.

1. Functional blocks in the pipeline have to deal with control and data information
not addressed to them, in which case they forward them onto the next block in
the pipeline.

2. Through the use of the proposed complexity analysis techniques, optimisations
were possible to the complexity of various blocks by introducing the Boolean
data-type for specific instances of data and control communications.

3. The design approach involves analysing which tokens are produced, consumed
or propagated by each functional block for accurate and optimal system speci-
fication. This process was laborious and time consuming.

4. The enforcement of all functional blocks to use the same generic interface in-
troduces unnecessary latencies to control and data information.

5. The hardware implementation implications are also great: large multiplexers
and token passing controllers have to be implemented and customised for each
functional block. Even with the most optimal design and implementation, the
resulting hardware is still expected to be very inefficient.

The above observations lead to the conclusion that the data and control multiplex-
ing architecture adds significant modelling, verification and possibly implementation
overhead and hence a different architecture for modelling the communication sys-
tem was needed. For these reasons, Chapter 5 introduces a more dynamic approach
for modelling the communication system, where various styles of control and data
communications are first considered. Subsequently, the concrete configurable com-
munication system is demonstrated.

4.9 Future Work

Future work includes a comprehensive analysis of complexity semantics of both CSP
and the associated machine-readable interface for FDR. This should result in modi-
fications to the existing constructs and interfaces or the provision of new ones that
are optimised from a complexity perspective.
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A static complexity analyser of CSP models producing complexity formulae and
asymptotic analysis of the models would be a useful tool for managing complexity
and designing optimal hardware architectures. It could also serve as another level of
formal verification, where the intended behaviour of the models as captured by the
modelling language and the verification tools conforms to the intended complexity
model.

Finally, this chapter presents the analysis of a communication system with a hand-
ful of state variables, which are at most shared between 5 processes. Roscoe [Chapter
18, 38], on the other hand, discusses Shared-Variable Programs in which variables are
shared between multiple threads in a parallel system. Those programs would benefit
from an empirical analysis similar to that which has been presented in this chapter.
Such an analysis would show how dependent the programs are on the shared variables
and how realistic the proposed model-checking solution is.
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CHAPTER 5

Hierarchically Controlled Concrete
Configurable Communication System

5.1 Motivation and Chapter Structure

The approach taken for providing configurability of the hardware blocks is based on an
ISA control system [70]. A central process has control over the system building blocks
using simple instructions for conveying control information, as well as for transferring
data to and from the control system. This chapter explores further design options for
modelling the configurable communication system.

For modelling the Concrete Configurable Communication System (C3S), the tech-
nique of separating functional requirements into functionally independent configurable
hardware blocks was employed. Though this technique was discussed in detail in
Chapter 2 and first modelled in Chapter 3, it was fine-tuned here through the com-
plexity analysis technique presented in Chapter 4 in order to reduce the verification
efforts.

First, Section 5.2 discusses how the data and control multiplexing presented in
Chapter 3 was further optimised through many refinements to result in the hierar-
chically controlled system. A formal description of the configurable blocks, as well as
how those blocks could be used to construct the top-level system is demonstrated in
Section 5.3 along with the ISA interface. Section 5.4 discusses the use of the config-
urable building blocks in exploring the construction of a system that meets the needs
of the targeted communication protocols. This is done through statically instantiat-
ing and connecting the desired configurable blocks synchronising on the appropriate
control and data channels.

91



Figure 5.1 highlights the models discussed in Sections 5.3 and 5.4 and their position
in the design and verification of the configurable communication system.

Formal System: Concrete Configurable System

Producer ConsumerISA Sender ISA Receiver 

DDC

STC

SBC

Formal System: Concrete Configurable System

Abstract Protocols Specification

Equivalent

DDC
ISA-

Oriented 
Specification  

SBC

DDC

Spec SenderProducer ConsumerSpec Receiver 

Figure 5.1 Outline of the Concrete Configurable Communication System

Finally, Section 5.5 presents the complexity analysis of the system and its compo-
nents through identifying the statistical metrics and solving the corresponding com-
plexity formulae. Asymptotic analysis of the complexity formulae and the effect of
different configuration parameters on such formulae is also discussed. The chapter
concludes with the summary and future work in Sections 5.6 and 5.7, respectively.

As mentioned already in Section 3.3, the notation used for describing the CSP
models in this thesis uses a combination of the Symbol Macros for CSP described
by Mazur [40], as well as standard algebraic notation to achieve best readability. The
full machine-readable CSP (CSPM) scripts of all the models discussed in this chapter
are available online at: www.cs.bris.ac.uk/~kharmeh/thesis/CSP.tar. Scatter-
good and Armstrong [71] provide a summary of the CSPM interface used throughout
those scripts.
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5.2 Hierarchical Control of the Functional Blocks

Because the data and control multiplexing approach described in Chapter 3 was
proving too complex and cumbersome to design and verify, other approaches were
explored until a final hierarchical approach was considered most practical.

First, a hybrid model that combines central and distributed control mechanisms
of the functional blocks was considered. This has evolved through the consideration
of two different architectural approaches.

1. Central Control: a single process modelling the instruction set of an embedded
system has direct control channels to each functional block in the system.

2. Distributed Control: each functional block has direct control over subsequent
functional blocks in the pipeline.

The reasoning behind the two control considerations is discussed briefly in the
following sections.

5.2.1 Central Control

This was required in order to deliver control commands directly from the ISA process
to control blocks further down the pipeline of configurable blocks. This is usually
needed because the ISA is responsible for configuring the functional units in the
system and for initiating any I/O operation. The introduced control channels are
demonstrated in Figure 5.2.

DataControl DataTock

ISA DDCSTC PHYSBC

Figure 5.2 Central Control of Configurable Units

Section 2.5.5 considered the compositional semantics of the functional blocks. In
order for the architecture demonstrated in Figure 5.2 to effectively address commands
and configurations composed of the interaction of more than one functional block, the
system needed further refinement.
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Let us consider the compositional semantics of the STC block and the PHY block
when executing a Timed Input operation. While the STC block is responsible for the
correct timing of the executed operation, the actual data input from the environment
is provided by the PHY block. Using the system in Figure 5.2, this operation can only
be achieved through a 2-phase transaction centrally controlled by the ISA process as
follows: the first phase starts by the ISA issuing a timing command to the STC and
is complete when the correct time has elapsed and the STC block notifies the ISA

of such completion. The ISA then issues the second phase of the transaction, which
resembles a raw input operation performed by the PHY block.

This has many drawbacks including efficiency, atomicity and timing correctness
of such transactions. A better approach for modelling compositional transactions is
demonstrated in Figure 5.3.

5.2.2 Distributed Control

This was required to enable the modelling of operations involving multiple config-
urable blocks as an atomic operation from the ISA point of view. It offers direct con-
trol channels from functional blocks to subsequent functional blocks in the pipeline,
as demonstrated in Figure 5.3.

ISA DDCSTC PHYSBC

Figure 5.3 Additional Distributed Control

The ISA process issues the commands directly to the first block in the composi-
tion chain, which in turn can complete the operation and respond back to the ISA.
Alternatively, such a block can issue further commands to the next block in the
composition chain.

In the case of Timed Input for example, the STC block can wait until the time of
the input is met. Then it triggers the input to the PHY block, which can then send
the data back to the ISA block.

Hypothetically, there is a scenario in which commands have to be propagated
along a chain if the source block and the destination block are not directly connected.
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The brute force alternative would be a large matrix of communication channels, where
each process has direct links to all other processes in the system.

5.2.3 Hierarchical Control

This was considered the most tractable approach. It presents a more dynamic mech-
anism for connecting the configurable blocks where the two connectivity abstractions
mentioned earlier (Central Control and Distributed Control) are taken into account.
In addition, the observations made in Section 2.5 argue that more than one require-
ment could have functional dependencies and hence could be better addressed in a
hierarchically constructed system: processes that address similar or dependent func-
tional aspects are grouped together into one larger block with a single interface to the
ISA process. For example, a register file is an integral part of the ISA process and
no other process in the system should have access to it. In Section 5.3, a set of func-
tional requirements are selected and modelled in their respective functional blocks.
The communication channels connecting the different blocks demonstrated later in
Figure 5.4 were developed through employing the different connectivity mechanisms
discussed.

5.3 The Concrete Configurable Communication
System

In this section, a concrete formal definition of the modelled functional blocks is pre-
sented. The CSP models of each block are discussed briefly, as well as the overall
system. At this point, the concrete system has the following configurable blocks:
STC, SBC and DDC. The direction of data flow is modelled as a configuration op-
tion in the relevant blocks and not as a separate configurable block, as discussed in
Section 2.5. The state of the physical interface (denoted by the PHY block in Fig-
ure 5.3) is integrated into the DDC functional block for implementation efficiency
considerations. Also modelled is an ISA controlling process to allow for the configu-
ration and communication with the functional blocks.

5.3.1 Preliminaries

First, preliminary functions, definitions and CSP constructs are defined. These are
shared between both the configurable communication system modelled in this chapter
and the communication protocols modelled in Chapter 6.
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Those are defined as follows:

inc(a, limit) = (a+ 1) mod limit (5.1)

add(a, b, limit) = (a+ b) mod limit (5.2)

sright(word, bit) =

{
(word/2) + 2DS−1 if bit = 1

(word/2) otherwise
(5.3)

boolean =Data = {0, 1} (5.4)

DataSize = DS = 2 (5.5)

DataWord = DW = {0 . . (2DS − 1)} (5.6)

TimeSize = TS = 3 (5.7)

TimeWord = TW = {0 . . (2TS − 1)} (5.8)

channel produce, consume : DataWord (5.9)

channel tock (5.10)

where:

• inc(a, limit): increments a by 1 and finds the modulo of the result by limit ;

• add(a, b, limit): adds a and b then finds the modulo of the result by limit ;

• sright(word, bit): shifts bit into word from the right;

• boolean: defines the basic communication data-type;

• DataSize: or DS is the system internal data word size which is used by some
registers and variables. It is also the unit of communication for the modelled
protocols in Chapter 6;

• DataWord : or DW is the communication system internal data word unit which
is DataSize bits wide;

• TimeSize: or TS is the size of the time data-type;

• TimeWord : or TW is the time data-type;

• produce: is a virtual generator of data that can output DataWords infinitely;

• consume: is a virtual consumer of data that can input DataWords infinitely;
and

• tock : is an event used to represent the passage of time.
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The produce and consume are virtual channels that are mainly used for functional
verification of the communication protocols. For the modelling part, they are assumed
to be an infinite source/sink of data items to be transmitted/received.

In addition, the following process definitions are made available:

TOCK(0) = SKIP (5.11)

TOCK(n) = tock → TOCK(n− 1) (5.12)

The TOCK process in Eqns. 5.11 and 5.12 is used to model the passage of n clock
cycles by a timed process.

In the CSP specification that follows, all blocks are assumed to have an arbitrary
number of control channels as per their functional requirements. The data interface is
modelled as two separate channels (one for input and one for output) on each side of
the configurable block. For example, the DDC block has two channels that connects
it to the environment (ddcLeftIn and ddcLeftOut) and two channels that connects it
to other internal blocks (ddcRightIn and ddcRightOut).

5.3.2 Data Dependent Control (DDC)

Let us now consider a data dependent input performed in the DDC block and how
this could be implemented in the presence of a PHY process. When the ISA block
initiates a data dependent input (i.e. an input operation which does not complete
until a specific value appears on the physical interface), the DDC process can execute
it using two possible approaches.

1. Polling: the DDC process keeps polling the PHY every clock cycle for input
until the right value is observed at which time it notifies the ISA.

2. Event based: the PHY could interrupt the DDC when the correct value is
observed, which is more efficient than polling.

Implementing the second alternative makes the DDC block redundant and hence
it may be bypassed, in which case the response can go directly to the ISA process.
This means that the PHY block is now implementing data dependent I/O operations.
For this reason, the PHY process functions including keeping track of the physical
state of the communication bus were integrated into the DDC process. This process
also modelled raw input and output operations.
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The physical interface, on the other hand, is modelled as signal change events
received and sent by the DDC block. The state of the physical interface is kept
internally within this block. A signal change event might be sent by this module as
a result of an output operation. Alternatively, it can be received as a result of an
external change to the physical interface triggered by another entity connected to the
bus.

The DDC block is defined as follows:

DDC = DDC ′(1) (5.13)

DDC ′(data) = tock → DDC ′(data) (5.14)

2 ddcRightIn?new → (5.15)

(Internal(new) 2 tock → DDC ′(new)) (5.16)

2 Internal(data) (5.17)

Internal(data) = ddcCtrl.RAWO→ DDCO2(data) (5.18)

2 ddcCtrl.COND→ DDCI2(data) (5.19)

2 ddcCtrl? RAWI→ DDCIFINISH(data) (5.20)

DDCO2(data) = stcCtrlDdc! STMP→ ddcLeftIn?new → (5.21){
ddcRightOut!new → tock → DDC ′(new) if new 6=data

tock → DDC ′(data) otherwise
(5.22)

DDCI2(data) = ddcLeftIn?cond→ (5.23){
DDCIFINISH(data) if data=cond

DDCI3 otherwise
(5.24)

DDCI3(cond) = tock → DDCI3(cond) (5.25)

2 ddcRightIn?new → (5.26){
DDCIFINISH(new) if new=cond

tock → DDCI3(cond) otherwise
(5.27)

DDCIFINISH(data) = stcCtrlDdc! STMP→ ddcLeftOut!data→ (5.28)

tock → DDC ′(data) (5.29)

The following is a brief description of the functions provided by the DDC block.
A top-level process (DDC ′) is defined to respond to interaction commands with the
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outside world, I/O commands from the ISA block, as well as I/O commands from the
STC block. Commands from ISA and also from STC are all triggered on the same
control channel (ddcCtrl).

• RAWI: Raw input command, which the DDC block can receive from the STC

block, once the correct time of the operation has elapsed. RAWI can also be
initiated from the ISA block. The DDC block responds to the ISA with the
physical state of the interface.

• RAWO: Raw output command which, depending on the physical state of the
interface that is recorded in this module, might trigger an external event that
is visible to the environment.

• COND: Conditional input command (or data dependent I/O) in which the ISA

block requires notification when the value of the physical interface equals the
value specified by the ISA process. The DDC block would only respond to ISA

once the value of the physical interface matches the requested value.

The DDC block needs to execute and synchronise on the timing event (tock)
because it is responsible for triggering the timestamps at the exact clock cycle an
operation has occurred. Hence it was modelled using tock-CSP similar to all other
blocks: all commands and responses need to be valid from a timing point of view
and the top-level processes need to conform to timing consistency checks, as will
be discussed in Chapter 7. In addition to the standard timing consistency checks,
logical timing consistency refers to the temporal relation between different real-time
commands. For these reasons, process DDC ′ in Eqn. 5.14 offers the internal choice
twice.

The DDC process is meant to register the state of the physical interface and act
like a latch for when the value of the external interface changes. For this reason, a
RAWI command presents this registered value to the ISA interface. In the case where
the physical interface changes its value in the same cycle the ISA requests an input,
the DDC responds with the newly registered value.

On the assumption that the value registered in the DDC block is the actual value
of the physical interface, an output operation would only result in a change event
when the output value is different from the currently registered value of the interface.
This is specified in Eqn. 5.22.
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Internally, a DDC unit is accessible through three channels: a control channel
(ddcCtrl), and data input and output channels (ddcRightIn and ddcRightOut respec-
tively). Those could be defined using the following sequence:

ddcPort = 〈ddcCtrl, ddcRightIn, ddcRightOut〉 (5.30)

In FDR, head(seq) returns the first item in a sequence, while tail(seq) removes the
first item in the sequence and returns the resulting new sequence. Hence, to access
the different channels of a DDC unit, the following definitions are found useful:

ctrl(ddcPort) =head(ddcPort) (5.31)

dIn(ddcPort) =head(tail(ddcPort)) (5.32)

dOut(ddcPort) =head(tail(tail(ddcPort))) (5.33)

5.3.3 Synchronisation and Timing Control (STC)

This functional block is responsible for keeping track of time by keeping count of the
total number of clock cycles elapsed. This count has a resolution which is specified
by the TimeSize constant defined in Eqn. 5.7. Once this count reaches its limit, it
resets to zero and starts counting up again.

Semantic analysis of the STC block revealed that none of its functions actually
involve manipulating the data stream. Its presence in the data pipeline, as depicted
in Figure 5.3 is redundant since it is merely forwarding data forward and backward.
For this reason it was removed from the data pipeline as shown in Figure 5.4.

In addition to its ability to control the timing of I/O operations, it has the ability
to register the time stamp of each I/O operation, which enables the ISA to control
subsequent timing operations. Timestamps are registered in a separate subprocess
called STCstamp, which is internal to the STC process. The introduction of such
an internal process was necessary due to limitations in the FDR compiler, which
restricts the total number of states a single sequential process can have: if the time
stamp of the previous operation was kept as an additional state variable to the STC

process, in addition to the current time and the target time of the next operation,
then the asymptotic State-Space Complexity of a single sequential process (STCcheck

in Eqn. 5.41) would be O(23×TS). This would break the compilation process in FDR.
The STC block is defined as follows:
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STCisync = {|stcCtrlDdc. STMP, tLocal, tock|} (5.34)

STC = (STC ′(0) ‖
STCisync

STCstamp(0)) \ {|tLocal|} (5.35)

STC ′(oTm) = STCtock(oTm) (5.36)

2 stcCtrl? TMDI .tm→ STCcheck(oTm, tm,TMDI) (5.37)

2 stcCtrl? TMDO .tm→ STCcheck(oTm, tm,TMDO) (5.38)

2 stcCtrlDdc? STMP→ tLocal!oTm→ STCtock(oTm) (5.39)

STCtock(oTm) = tock → STC ′(inc(oTm, 2TS)) (5.40)

STCcheck(oTm, tm, io) = (5.41){
STCcommand(oTm, io) if tm=oTm

tock → STCcheck(inc(oTm, 2TS), tm, io) otherwise
(5.42)

STCcommand(oTm, io) = (5.43){
ddcCtrlStc! RAWI→ STCfinish(oTm) if io=TMDI

ddcCtrlStc! RAWO→ STCfinish(oTm) otherwise
(5.44)

STCfinish(oTm) = STCtock(oTm) (5.45)

2 stcCtrlDdc? STMP→ tLocal!oTm→ STCtock(oTm) (5.46)

STCstamp(sT ime) = tock → STCstamp(sT ime) (5.47)

2 stcCtrlDdc? STMP→ tLocal?new → STCstamp(new) (5.48)

2 stcT ime!sT ime→ tock → STCstamp(sT ime) (5.49)

Hence, the STC responds to the following commands.

• TMDI: timed input (or time dependent input) command instantiated by the
ISA block. The STC block compares the required operation time with the
current time at each cycle in Eqn. 5.41. Once the operation time is reached, it
signals the DDC block with a RAWI command in Eqn. 5.43.

• TMDO: timed output (or time dependent output) command, which is similar to
the TMDI except that once the specified time has been met a RAWO command
is signalled to the DDC block.

• STMP: timestamping command, which is received from DDC. Its response
is internal to the STC, which involves registering a copy of the current time
counter in the STCstamp process in Eqn. 5.47.

101



• Timestamp read command in which the ISA reads the last timestamp through
the stcTime channel.

It is essential for the DDC block to request the timestamping at the exact clock
cycle an I/O operation completes. It is also essential that ISA instructions happen in
a timely manner for the whole system to meet protocol deadlines. Special attention
was needed to avoid race conditions and time lags between different system compo-
nents. The absence of such issues was established through system-level verification,
as described in Chapter 7.

5.3.4 Serialisation and Buffering Control (SBC)

This section defines the SBC block. It supports bidirectional serialisation and de-
serialisation of data words from/to the ISA process through the DDC process onto
the environment. This is useful when the ISA pipeline is relatively slower than the
physical interface. For this reason, the SBC unit is able to shift data in and out of the
system at speeds as fast as 1 bit each clock cycle, while the ISA process might need
many clock cycles per data item. This means a shifting and serialisation procedure
implemented in the ISA process is likely to take many cycles per bit.

The SBC block takes commands from the ISA process on the sbcCtrl channel.
Currently, it uses the global clock (or a divider of the global clock) to control the
serialisation and de-serialisation procedure. Data shifting in both directions (to and
from the physical interface) has been modelled.

The SBC process is defined as follows:

SBCsync = {|sbcCtrl, tock|} (5.50)

SBC = SBC ′(port0, sbcCtrl) (5.51)

SBC ′(port, sbcCtrl) = tock → SBC ′(port, sbcCtrl) (5.52)

2 sbcCtrl.BUFI?delay → (5.53)

SBCinStart(port, sbcCtrl, delay, 0) (5.54)

2 sbcCtrl.BUFO?delay → (5.55)

sbcCtrl.BUFD?data→ (5.56)

SBCout(port, sbcCtrl, delay,DS, data) (5.57)
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SBCinStart(port, sbcCtrl, d, w) = TOCK(d− IDelay); (5.58)

ctrl(port)! RAWI→ dIn(port)?bit→ (5.59)

SBCin(port, sbcCtrl, d,DS−1, sright(w, bit)) (5.60)

IDelay is used to model the number of cycles each instruction takes to execute in
the ISA pipeline. The use of IDelay will become more apparent in Section 5.3.5.

In CSPM, the semicolon is used to compose two processes in sequence: when the
first process successfully terminates (which is denoted by executing the SKIP process),
the second process starts execution.

SBCin(port, sbcCtrl, d, count, w) = (5.61)

sbcCtrl.BUFD!w →

SBC ′(port, sbcCtrl)

}
if count=0

TOCK(d);

ctrl(port)! RAWI→

dIn(port)?bit→

SBCin(port, sncCtrl, d,

count− 1, sright(w, bit))


otherwise

(5.62)

SBCout(port, sbcCtrl, d, count, w) = (5.63)

SBCoutOne(port, w mod 2);

TOCK(d− IDelay);

sbcCtrl.BUFR→

SBC ′(port, sbcCtrl)


if count=1

SBCoutOne(port, w mod 2);

TOCK(d);

SBCout(port, sbcCtrl,

d, count− 1, w/2)


otherwise

(5.64)

SBCoutOne(port, bit) = ctrl(port)! RAWO→ (5.65)

dOut(port)!bit→ SKIP (5.66)

According to the specifications above, the SBC unit responds to the following two
commands only:

103



1. BUFO: buffered output or serialisation; the SBC receives the delay (d) between
each data bit counted in clock cycles. It also receives the data to be serialised.
After all the data bits have been output on the attached DDC unit, the SBC

notifies the ISA unit by issuing the buffer ready event (BUFR).

2. BUFI: buffered input or de-serialisation; similar to the BUFO, except that the
data is transferred in the opposite direction (from the DDC through the SBC

to the ISA). The transfer completes when the SBC notifies the ISA with the
availability of data, using the BUFD event accompanied with the data word.

From a timing perspective, the SBC output process mirrors the SBC input process
with respect to the relation between the bit I/O operations and the inserted delays.
The exact timing specifications were developed and verified for correctness through
interoperability assertions which coupled unbuffered configurations with the buffered
ones. More details about those assertions will be discussed in Chapter 7.

5.3.5 Instruction Set Architecture (ISA)

The ISA process is an abstraction of the instruction set of a simple controller. The
modelled instructions are needed for communication system configuration, data I/O
and a selected set of arithmetic operations. The ISA process synchronises on tock
events in order to meet the deadlines of communication protocols and avoid any
race conditions. Each instruction takes at least one clock cycle (one tock event). The
instruction delay could be manually changed to explore various design considerations.
It is globally defined as IDelay. A special No-Operation (NOP) instruction is provided
for implementing time delays.

5.3.5.1 Register File

While modelling the ISA process it became clear that the atomicity of instructions is
important for subsequent modelling stages. Intermediate ISA state variables, such as
inputted data and timestamps were best maintained using separate processes similar
to the STCstamp subprocess used by the STC process. Those processes make the
stored state variables available to subsequent instructions. They essentially represent
registers in traditional Instruction Set Architectures. Three registers were modelled;
a time register, a bit register and a word register. The were all interleaved in a top-
level register file process called REG. Many approaches to modelling the register file
were attempted. Those include:
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• an arbitrary sequence of any number of reads and writes;

• a single write followed by a number of reads; and

• enforcing a read after each write.

The last option proved most optimal in terms of state-space size and hence it was
initially used for one register before it was adopted as the standard mechanism for
reading and writing ISA state variables. This added a slight modelling overhead when
used in the modelling of the whole instruction set. The adopted definition of a single
register can be seen in Eqn. 5.75. Each register was accessed using an identification
sequence. The first element in the sequence is the write channel, the second element
is the read channel, and the third and last element is the capacity (the number of
distinct values it could hold). The definition of those identification sequences can be
seen in Eqns. 5.67 to 5.69.

bReg0 = 〈b0w, b0r, 2〉 (5.67)

wReg0 = 〈w0w,w0r, 2DS〉 (5.68)

tReg0 = 〈t0w, t0r, 2TS〉 (5.69)

regs = {bReg0, wReg0, tReg0} (5.70)

The following definitions were found useful for accessing the different elements of
a register identification sequence:

write(reg) =head(reg) (5.71)

read(reg) =head(tail(reg)) (5.72)

limit(reg) =head(tail(tail(reg))) (5.73)

Finally, the registers were defined as follows:

RO(reg) =write(reg)?new → (5.74)

read(reg)!new → RO(reg) (5.75)

WR = RO(wReg0) (5.76)

TR = RO(tReg0) (5.77)

DR = RO(bReg0) (5.78)

REG = DR ||| TR |||WR (5.79)
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The definitions above represent asynchronous zero-time read/write registers and
hence timing consistency is maintained by the ISA process that is synchronising with
this register file.

Roscoe [Chapter 18, 38] discusses Shared-Variables Programs, where a number of
threads have access to a register file. In addition, Roscoe uses more complex models
for the individual registers. The presented techniques are thought to be unrealistic
for modelling data-sensitive programs and systems due to the state-space explosion
problem, but could be useful for modelling abstract data-types.

5.3.5.2 Instruction Set

Instructions take n × IDelay cycles to execute where n ≥ 1. For simple I/O and
arithmetic instructions, n could equal 1. However, and for some experiments, n was
allowed to be 0 which give rise to zero-time instructions. Of course this is not practi-
cally possible and would violate many timing checks, but when those instructions are
coupled with I/O instructions or other instructions where n ≥ 1, timing consistency
can be established. In final experiments, n is always ≥ 1 for all instructions.

The simple arithmetic instructions which were defined for variable delay are de-
fined as follows:

TC = TOCK(c) (5.80)

ADD(reg, val, c) = read(reg)?d→ (5.81)

write(reg)!((d+ val) mod count(reg))→ TC (5.82)

TEST(reg, val,PT,PF, c) = read(reg)?data→ write(reg)!data→ (5.83){
TC ; PT if val=data

TC ; PF otherwise
(5.84)

SHIFTL(wReg, bReg, c) = read(wReg)?word→ (5.85)

write(wReg)!(word/2)→ (5.86)

read(bReg)?dump→ (5.87)

write(bReg)!(word mod 2)→ TC (5.88)
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SHIFTR(wReg, bReg, c) = read(bReg)?bit→ (5.89)

write(bReg)!bit→ read(wReg)?w → (5.90){
write(wReg)!(w/2 + 2DS−1)→ TC if b=1

write(wReg)!(w/2)→ TC otherwise
(5.91)

INIT(reg, val, c) = read(reg)?dump→ (5.92)

write(reg)!val→ TC (5.93)

CLEAR(reg, c) =write(reg)!0→ TC (5.94)

2 read(reg)?dump→ write(reg)!0→ TC (5.95)

In the CSP description above, most instructions simply read register values, mod-
ify them and write the value back to the relevant registers. No interaction with the
configurable blocks is needed. Because all registers are modelled as sequences of ex-
actly one read and one write, the clear instruction accommodates for two alternatives:
clearing the registers at the start of an instruction sequence as in Eqn. 5.94 and for
intermediate clearing of register in Eqn. 5.95.

The list of ports that are available to I/O instructions could be defined as follows:

port0 = 〈ddcCtrl0, isaIn0, isaOut0〉 (5.96)

port1 = 〈ddcCtrl1, isaIn1, isaOut1〉 (5.97)

port2 = 〈ddcCtrl2, isaIn2, isaOut2〉 (5.98)

port3 = 〈ddcCtrl3, isaIn3, isaOut3〉 (5.99)

ports = {port0, port1, port2, port3} (5.100)

Instructions that take exactly IDelay clock cycles include simple I/O instructions.
Those are defined as follows:

TD = TOCK(IDelay) (5.101)

RAWOUTV(port, data) = ctrl(port)! RAWO→ (5.102)

dOut(port)!data→ TD (5.103)

RAWOUT(port, reg) = read(reg)?data→ write(reg)!data→ (5.104)

ctrl(port)! RAWO→ dOut(port)!data→ TD (5.105)
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RAWIN(port, reg) = ctrl(port)! RAWI→ dIn(port)?data→ (5.106)

read(reg)?dump→ write(reg)!data→ TD (5.107)

STMPREAD(dPort, reg) = dPort?stmpT ime→ read(reg)?dump→ (5.108)

write(reg)!stmpT ime→ TD (5.109)

GET(chan, reg) = chan?data→ read(reg)?dump→ (5.110)

write(reg)!data→ TD (5.111)

PUT(chan, reg) = read(reg)?data→ (5.112)

write(reg)!data→ chan!data→ TD (5.113)

NOP = TD (5.114)

The RAW instructions interact with a DDC unit, the STMPREAD interact with an
STC block, and the GET /PUT pair are abstract data input and output instructions
used for functional verification.

More complex instructions can potentially take more than IDelay cycles. Exam-
ples of complex instructions are time or data dependent instructions. Those execute
in two stages, an initial configuration stage and a wait stage. For the wait stage, the
following micro-instructions are defined:

WAITDATA(chan, reg) = chan?data→ read(reg)?dump→ (5.115)

write(reg)!data→ TD (5.116)

2 TD ; WAITDATA(chan, reg) (5.117)

WAITVALUE(chan, val) = chan.val→ TD (5.118)

2 TD ; WAITVALUE(chan, val) (5.119)

WAIT(chan) = chan→ TD (5.120)

2 TD ; WAIT(chan) (5.121)

The WAITDATA process waits for any item to arrive on chan which is then written
to the provided register (reg) and the process finishes successfully. WAITVALUE waits
for the specified value to arrive on the communication channel, but does not save
that value to a register. WAITVALUE could be used to implement both delayed input
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and delayed output. Finally, WAIT only waits for a simple event to happen on the
provided channel.

Then, using those WAIT processes, the more complex I/O instructions are defined
as follows:

CONDIN(port, cond) = ctrl(port).COND!cond→ (5.122)

WAITVALUE(dIn(port), cond) (5.123)

TMDIN(tReg, bReg) = read(tReg)?rT ime→ write(tReg)!rT ime→ (5.124)

iTmd.TMDI!rT ime→WAITDATA(isaIn0, bReg) (5.125)

TMDOUT(tReg, bReg) = read(tReg)?rT ime→ write(tReg)!rT ime→ (5.126)

iTmd.TMDO!rT ime→ read(bReg)?data→ (5.127)

write(bReg)!data→WAITVALUE(isaOut0, data) (5.128)

BUFIN(del, reg) = iBuf.BUFI!del→WAITDATA(iBuf.BUFD, reg) (5.129)

BUFOUT(delay, reg) = iBuf.BUFO!delay → (5.130)

read(reg)?data→ write(reg)!data→ (5.131)

iBuf.BUFD!data→WAIT(iBuf.BUFR) (5.132)

The TMD instructions communicate with the STC unit to achieve timed input and
timed output. For demonstration purposes, only one STC unit has been instantiated
which is attached to port0. The BUF instructions communicate with the SBC unit
to model buffered input and output. These instructions take the number of cycles
between individual buffered items (delay), which is equivalent to deriving a regular
clock from the system clock. Also, only one buffering unit has been instantiated,
which is also assumed to be attached to port0 in the specifications above. Finally,
the data dependent I/O instruction (CONDIN) communicates with a DDC unit and
commits once the correct data value has been observed on the physical interface.

A top-level abstract description of an ISA process is seen as any possible sequence
of the above instructions.

BOOTCODE = CLEAR(wReg0, IDelay); (5.133)

CLEAR(tReg0, IDelay); (5.134)

CLEAR(bReg0, IDelay) (5.135)
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ISA = BOOTCODE ; ISAL (5.136)

The provided description of an ISA process which could perform any possible
sequence of instructions is only useful in some contexts: for example, to verify the
deadlock, livelock freedom of all possible programs and their timing consistency. Such
checks are discussed in Chapter 7. However, as the instruction set and the associated
data sets grow, such checks become unrealistic. In such cases, the data sets would have
to be limited to selected interesting values or restrictions would have to be imposed on
the allowable sequences of instructions. In Chapter 6, instruction sequences are used
to identify the functional and performance specification of selected communication
protocols, which are then used to perform functional, performance and conformance
checks in Chapter 7.

ISAL = (u ∀ port ∈ ports ∧ c ∈ Data⇒ CONDIN(port, c) ; ISAL) (5.137)

u (u ∀ port ∈ ports ∧ d ∈ Data⇒ RAWOUTV(port, d) ; ISAL) (5.138)

u (u ∀ port ∈ ports⇒ RAWIN(port, bReg0) ; ISAL) (5.139)

u (u ∀ port ∈ ports⇒ RAWOUT(port, bReg0) ; ISAL) (5.140)

u (u ∀ delay ∈ TInterval⇒ BUFIN(delay, wReg0) ; ISAL) (5.141)

u (u ∀ delay ∈ TInterval⇒ BUFOUT(delay, wReg0) ; ISAL) (5.142)

u (u ∀ delay ∈ TInterval⇒ ADD(tReg0, delay, IDelay) ; ISAL) (5.143)

u (u ∀ d ∈ Data⇒ TEST(bReg0, d, SKIP, SKIP, IDelay) ; ISAL) (5.144)

u (u ∀ d ∈ Data⇒ INIT(bReg0, d, IDelay) ; ISAL) (5.145)

u (u ∀ reg ∈ regs⇒ CLEAR(reg, IDelay) ; ISAL) (5.146)

u STMPREAD(iT ime, tReg0) ; ISAL (5.147)

u TMDIN(tReg0, bReg0) ; ISAL (5.148)

u TMDOUT(tReg0, bReg0) ; ISAL (5.149)

u GET(produce, wReg0) ; ISAL (5.150)

u PUT(consume,wReg0) ; ISAL (5.151)

u SHIFTR(wReg0, bReg0, IDelay) ; ISAL (5.152)

u SHIFTL(wReg0, bReg0, IDelay) ; ISAL (5.153)

u NOP ; ISAL (5.154)
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5.4 Design Exploration: Configurable System Con-
struction

Once the configurable blocks have been modelled and verified individually, a system
can be constructed by connecting the relevant control channels between the individual
components. This is achieved through renaming and parallel composition in CSP. For
example, a system with a single DDC unit, connected to an STC unit and an SBC

unit could be constructed as follows:

aReg = {|b0r, b0w, t0r, t0w,w0r, w0w|} (5.155)

aSbc = {|sbcCtrl, tock|} (5.156)

aStc = {|stcCtrl, stcT ime, tock|} (5.157)

aDdc = {|ddcCtrl0, isaIn0, isaOut0|} ∪ {|stcCtrlDdc|} ∪ {tock} (5.158)

dLI = ddcLeftIn (5.159)

dLO = ddcLeftOut (5.160)

dRI = ddcRightIn (5.161)

dRO = ddcRightOut (5.162)

DDC0 = (5.163)

DDC [[dLI, dLO, dRI, dRO, ddcCtrl/isaOut0, isaIn0, dRI0, dRO0, ddcCtrl0]] (5.164)

SYSTEMone-bit = (((ISA ‖
aReg

REG) ‖
aSbc

SBC) ‖
aStc

STC) ‖
aDdc

DDC0 (5.165)

Because the composition only involves one process of each configurable block,
the construction is relatively straightforward: connecting the DDC unit to the ISA

through attaching the relevant data channels. A form of CSP renaming is used to
accomplish this, as seen in Eqn. 5.164. Similarly, the SBC unit is attached to the ISA

process, as well as to the DDC unit through functional style renaming (See Eqn. 5.51).
A block diagram of SYSTEMone-bit is demonstrated in Figure 5.4.

It is evident from the CSP descriptions of the relevant units, as well as from
Figure 5.4 that there are two control channels between the STC and the DDC unit.
This is useful when the number of STC units constructed does not match the number
of DDC units, in which situation it is possible to connect either the forward control
channel (ddcCtrlStc) or the feedback control channel (stcCtrlDdc) as per the explored
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Figure 5.4 One Bit Concrete Communication System

design requirements. For example, a single STC could be made to issue synchronised
timed commands to a number of DDC units, but only one of the DDC units is
connected through the stcCtrlDdc channel to the STC unit and hence is able to
respond with timestamping commands.

Many communication protocols would have wider interfaces with more than 1 bit,
in which case DDC processes are composed in parallel to reflect the number of bits
the interface has. For this reason, the DDC unit went through a rigorous optimisation
process, in order for the interleaving of many units not to have a great impact on the
complexity of the overall system.

This enabled the modelling and subsequent verification of protocols which use
many independent one bit ports, such as the SPI protocol. This is demonstrated in
Section 6.4.2.

As an example, a system involving 4 DDC units and 1 STC unit is constructed in
Eqn. 5.179. A top-level diagram of this construction can be seen in Figure 5.5.
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DDC1 = (5.166)

DDC [[dLI, dLO, dRI, dRO, ddcCtrl/isaOut1, isaIn1, dRI1, dRO1, ddcCtrl1]] (5.167)

DDC2 = (5.168)

DDC [[dLI, dLO, dRI, dRO, ddcCtrl/isaOut2, isaIn2, dRI2, dRO2, ddcCtrl2]] (5.169)

DDC3 = (5.170)

DDC [[dLI, dLO, dRI, dRO, ddcCtrl/isaOut3, isaIn3, dRI3, dRO3, ddcCtrl3]] (5.171)

aDdc4Bit = {|ddcCtrl0, isaIn0, isaOut0|} (5.172)

∪ {|ddcCtrl1, isaIn1, isaOut1|} (5.173)

∪ {|ddcCtrl2, isaIn2, isaOut2|} (5.174)

∪ {|ddcCtrl3, isaIn3, isaOut3|} (5.175)

∪ {|stcCtrlDdc|} (5.176)

∪ {tock} (5.177)

DDC4-bit = ((DDC0 ‖
{tock}

DDC1) ‖
{tock}

DDC2) ‖
{tock}

DDC3 (5.178)

SYSTEMfour-bit = (((ISA ‖
aReg

REG) ‖
aSbc

SBC) ‖
aStc

STC) ‖
aDdc

DDC4-bit (5.179)

5.5 Results and Complexity Analysis

Contrary to Section 3.4, where a universal data-type was used, the concrete system
used multiple data-types, many of which are of fixed sizes, such as the Boolean data-
type. Two types, however, still had variable sizes: the DataWord type, which is
configurable using DS and the TimeWord type, which is configurable using TS. In
essence, TimeWord is a new type, which is used for capturing time, while the Data-
Word type discussed in Section 3.4 has been used only for holding data words to be
communicated by the modelled protocol.

Table 5.1 shows how the size of each system component grows as the value of DS

changes. The results were gathered while fixing TS to be equal 2. Table 5.2, on the
other hand, shows the results as TS changes, while DS equals 2.

The results were obtained using the optimised version of FDR 2.91 Academic
Release running on a Linux kernel version 2.6.32. In addition to the optimisations
described in Section 4.5, an efficient statistics extraction mechanism was integrated
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into FDR. The computer used had 8 Cores, each of which is a 3.16 GHz Intel Xeon
processor. All processors shared 40 GB of available main memory. Under this envi-
ronment, extracting the metrics in Table 5.1 took 48 minutes and 34 seconds, where
all metrics were extracted for DS = {1 . . 8}. Extracting the metrics in Table 5.2 took
55 minutes and 15 seconds. Again, all metrics were extracted for TS = {1 . .8} except
for the top-level SYSTEM process, which was only extracted for TS = {1 . . 4}. In an
attempt to extract the metrics for the SYSTEM process for TS = 5, FDR consumed
all available 40 GB of main memory, before it was gracefully terminated by the kernel.

By using the same technique described in Section 4.6.3, the results in Tables 5.1
and 5.2 were analysed.
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Table 5.1 Metric Results by Varying DataSize while TimeSize = 2

DataSize (DS) 1 2 3 4 5 6 7 8 SS

Measured 18 22 30 46 78 142 270 526
Predicted 18 22 30 46 78 142 270 526Events

Error2 0 0 0 0 0 0 0 0 0
Measured 45 75 135 255 495 975 1935 3855
Predicted 45 75 135 255 495 975 1935 3855States

Error2 0 0 0 0 0 0 0 0 0
Measured 192 340 636 1228 2412 4780 9516 18988
Predicted 192 340 636 1228 2412 4780 9516 18988

REG

Trans.
Error2 0 0 0 0 0 0 0 0 0

Measured 72 82 102 142 222 382 702 1342
Predicted 72 82 102 142 222 382 702 1342Events

Error2 0 0 0 0 0 0 0 0 0
Measured 155 171 199 255 367 591 1039 1935
Predicted 157 171 199 255 367 591 1039 1935States

Error2 4 0 0 0 0 0 0 0 4
Measured 255 301 409 721 1729 5281 18529 69601
Predicted 258 300 408 720 1728 5280 18528 69600

ISA

Trans.
Error2 9 1 1 1 1 1 1 1 16

Table 5.1 Continued ↓
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DataSize (DS) 1 2 3 4 5 6 7 8 SS

Measured 20 22 26 34 50 82 146 274
Predicted 20 22 26 34 50 82 146 274Events

Error2 0 0 0 0 0 0 0 0 0
Measured 32 107 263 575 1199 2447 4943 9935
Predicted 78 156 312 624 1248 2496 4992 9984States

Error2 2116 2401 2401 2401 2401 2401 2401 2401 18923
Measured 45 133 315 679 1407 2863 5775 11599
Predicted 90 180 360 720 1440 2880 5760 11520

SBC

Trans.
Error2 2025 2209 2025 1681 1089 289 225 6241 15784

Measured 21 21 21 21 21 21 21 21
Predicted 21 21 21 21 21 21 21 21Events

Error2 0 0 0 0 0 0 0 0 0
Measured 332 332 332 332 332 332 332 332
Predicted 332 332 332 332 332 332 332 332States

Error2 0 0 0 0 0 0 0 0 0
Measured 880 880 880 880 880 880 880 880
Predicted 880 880 880 880 880 880 880 880

STC

Trans.
Error2 0 0 0 0 0 0 0 0 0

Table 5.1 Continued ↓
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DataSize (DS) 1 2 3 4 5 6 7 8 SS

Measured 20 20 20 20 20 20 20 20
Predicted 20 20 20 20 20 20 20 20Events

Error2 0 0 0 0 0 0 0 0 0
Measured 20 20 20 20 20 20 20 20
Predicted 20 20 20 20 20 20 20 20States

Error2 0 0 0 0 0 0 0 0 0
Measured 62 62 62 62 62 62 62 62
Predicted 62 62 62 62 62 62 62 62

DDC

Trans.
Error2 0 0 0 0 0 0 0 0 0

Measured 79 89 109 149 229 389 709 1349
Predicted 79 89 109 149 229 389 709 1349Events

Error2 0 0 0 0 0 0 0 0 0
Measured 144221 336541 776477 1927709 5276701 16082973 53973021 1.9E+08
Predicted 175018 371220 827176 1993296 5342368 16107840 53908096 1.9E+08States

Error2 9.5E+08 1.2E+09 2.6E+09 4.3E+09 4.3E+09 6.2E+08 4.2E+09 1.2E+09 1.9E+10
Measured 313911 714039 1615415 3918903 10467383 31207479 1.0E+08 3.7E+08
Predicted 364838 769140 1696136 4023696 10573088 31248960 1.0E+08 3.7E+08

SYSTEM

Trans.
Error2 2.6E+09 3.0E+09 6.5E+09 1.1E+10 1.1E+10 1.7E+09 1.1E+10 3.5E+08 4.7E+10

Table 5.1 Metric Results by Varying DataSize while TimeSize = 2
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Table 5.2 Metric Results by Varying TimeSize while DataSize = 2

TimeSize (TS) 1 2 3 4 5 6 7 8 SS

Measured 18 22 30 46 78 142 270 526
Predicted 18 22 30 46 78 142 270 526Events

Error2 0 0 0 0 0 0 0 0 0
Measured 45 75 135 255 495 975 1935 3855
Predicted 45 75 135 255 495 975 1935 3855States

Error2 0 0 0 0 0 0 0 0 0
Measured 192 340 636 1228 2412 4780 9516 18988
Predicted 192 340 636 1228 2412 4780 9516 18988

REG

Trans.
Error2 0 0 0 0 0 0 0 0 0

Measured 68 82 110 166 278 502 950 1846
Predicted 68 82 110 166 278 502 950 1846Events

Error2 0 0 0 0 0 0 0 0 0
Measured 147 171 219 315 507 891 1659 3195
Predicted 147 171 219 315 507 891 1659 3195States

Error2 0 0 0 0 0 0 0 0 0
Measured 241 301 469 997 2821 9541 35269 135877
Predicted 241 301 469 997 2821 9541 35269 135877

ISA

Trans.
Error2 0 0 0 0 0 0 0 0 0

Table 5.2 Continued ↓
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TimeSize (TS) 1 2 3 4 5 6 7 8 SS

Measured 18 22 30 46 78 142 270 526
Predicted 18 22 30 46 78 142 270 526Events

Error2 0 0 0 0 0 0 0 0 0
Measured 52 107 253 689 2137 7337 26953 103049
Predicted 52 107 253 689 2137 7337 26953 103049States

Error2 0 0 0 0 0 0 0 0 0
Measured 66 133 303 787 2331 7723 27723 104587
Predicted 66 133 303 787 2331 7723 27723 104587

SBC

Trans.
Error2 0 0 0 0 0 0 0 0 0

Measured 15 21 33 57 105 201 393 777
Predicted 15 21 33 57 105 201 393 777Events

Error2 0 0 0 0 0 0 0 0 0
Measured 54 332 2328 17456 135264 1065152 8454528 67371776
Predicted 54 332 2328 17456 135264 1065152 8454528 67371776States

Error2 0 0 0 0 0 0 0 0 0
Measured 144 880 6048 44608 342144 2679040 21201408 168690688
Predicted 144 880 6048 44608 342144 2679040 21201408 168690688

STC

Trans.
Error2 0 0 0 0 0 0 0 0 0

Table 5.2 Continued ↓
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TimeSize (TS) 1 2 3 4 5 6 7 8 SS

Measured 20 20 20 20 20 20 20 20
Predicted 20 20 20 20 20 20 20 20Events

Error2 0 0 0 0 0 0 0 0 0
Measured 20 20 20 20 20 20 20 20
Predicted 20 20 20 20 20 20 20 20States

Error2 0 0 0 0 0 0 0 0 0
Measured 62 62 62 62 62 62 62 62
Predicted 62 62 62 62 62 62 62 62

DDC

Trans.
Error2 0 0 0 0 0 0 0 0 0

Measured 75 89 117 173
Predicted 75 89 117 173Events

Error2 0 0 0 0 0
Measured 35005 336541 3929629 58019869
Predicted 34945 336644 3929579 58019876States

Error2 3600 10650 2540 52 16842
Measured 73655 714039 8330807 121957431
Predicted 73113 714708 8330673 121957438

SYSTEM

Trans.
Error2 293764 447829 17956 46 759595

Table 5.2 Metric Results by Varying TimeSize while DataSize = 2

120



Table 5.3 shows all the multiplicand values for all the processes with respect to
the results presented in Table 5.1. Table 5.4, on the other hand, shows the complexity
results for Table 5.2.

Multiplicand 1 2DS 22×DS

Events 14 2
States 15 15REG

Transitions 44 74
Events 62 5
States 143 7ISA

Transitions 224 15 1
Events 18 1
States 0 39SBC

Transitions 0 45
Events 21
States 332STC

Transitions 880
Events 20
States 20DDC

Transitions 62
Events 69 5
States 0 82213 2648SYSTEM

Transitions 0 172553 4933

Table 5.3 Factor Results by Varying DataSize while TimeSize = 2

The complexity analysis was performed using Excel 2007, running on Windows 7
virtual machine (VMware Player version 5.0.2). The computer that was used had an
1.60 GHz Intel Core i7 processor and 8 GB of available main memory. Using this
configuration, producing all the results in Table 5.3 took 27 seconds, an average of
1.5 seconds per complexity equation. Similarly, solving all the results in Table 5.4
took 30 seconds, an average of 1.7 seconds per equation.

The algorithm succeeded in solving most of the equations and the final value of
the sum of errors squares (SS) was zero. However, in some cases, this was not correct.
Tables 5.1 and 5.2 show the final SS results after the algorithm had been applied.

For clarity, the SComplex and CComplex equations summarised in Tables 5.3
and 5.4 have been rewritten in equation form. The final State-Space Complexity and
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Multiplicand 1 2TS 22×TS 23×TS 24×TS 25×TS

Events 14 2
States 15 15REG

Transitions 44 74
Events 54 7
States 123 12ISA

Transitions 197 18 2
Events 14 2
States 9 18.5 1.5SBC

Transitions 11 24.5 1.5
Events 9 3
States 0 3 4 4STC

Transitions 0 4 14 10
Events 20
States 20DDC

Transitions 62
Events 61 7
States 1073 8.8 0.2 3356.7 403.5 17SYSTEM

Transitions 420.2 0 425 6960.9 889.8 33.4

Table 5.4 Factor Results by Varying TimeSize while DataSize = 2

Communication-Space Complexity formulae with respect to the size of the DataWord
data-type (DS) can be seen in Eqns. 5.180 to 5.191.

Eqns. 5.186 to 5.189 show the independence of both the DDC and STC units from
DS, which conforms to good design and verification practices and justifies the effort
dedicated to lifting the STC unit out of the data path.

REGSComplex(DS) = 15 + 15× 2DS (5.180)

REGCComplex(DS) = 44 + 74× 2DS (5.181)

ISASComplex(DS) = 143 + 7× 2DS (5.182)

ISACComplex(DS) = 225 + 15× 2DS + 1× 22×DS (5.183)

SBCSComplex(DS) = 39× 2DS (5.184)

SBCCComplex(DS) = 45× 2DS (5.185)

STCSComplex(DS) = 332 (5.186)
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STCCComplex(DS) = 880 (5.187)

DDCSComplex(DS) = 20 (5.188)

DDCCComplex(DS) = 62 (5.189)

As for the SBC unit, it was not possible to get satisfactory solutions to the com-
plexity formulae that closely match the metrics extracted from the model-checker.
The results demonstrated in Eqns. 5.184 and 5.185 show the best possible solution
using the constraints and generic complexity formulae discussed in Section 4.6. They
are associated with relatively large errors (SS values) in Table 5.1.

By looking closely at the use of the DS configuration parameter in the SBC unit, it
is evident that not only was it used to configure the size of the DataWord data-type,
but also as a loop invariant for the buffering and serialisation mechanism. Eqns. 5.57
and 5.60 demonstrate this use, which is not thought to be of exponential nature.
This is also evident in the complexity formulae of the top-level SYSTEM process
(Eqns. 5.190 and 5.191). The associated SS values for the SComplex and CComplex
equations are 1.9 E+10 and 4.7 E+10, respectively. See Table 5.1 for more details.
For this reason, it is expected that the generic formula in Eqn. 4.8 would need to be
altered to take into account non-exponential components.

SYSTEMSComplex(DS) = 82147× 2DS + 2648× 22×DS (5.190)

SYSTEMCComplex(DS) = 172553× 2DS + 4933× 22×DS (5.191)

With respect to the size of TimeWord data-type (TS), the resulted formulae for
all processes can be seen in Eqns. 5.192 to 5.205.

REGSComplex(TS) = 15 + 15× 2TS (5.192)

REGCComplex(TS) = 44 + 74× 2TS (5.193)

ISASComplex(TS) = 123 + 12× 2TS (5.194)

ISACComplex(TS) = 197 + 18× 2TS + 2× 22×TS (5.195)

SBCSComplex(TS) = 9 + 18.5× 2TS + 1.5× 22×TS (5.196)

SBCCComplex(TS) = 11 + 24.5× 2TS + 1.5× 22×TS (5.197)

STCSComplex(TS) = 3× 2TS + 4× 22×TS + 4× 23×TS (5.198)

STCCComplex(TS) = 4× 2TS + 14× 22×TS + 10× 23×TS (5.199)

DDCSComplex(TS) = 20 (5.200)

DDCCComplex(TS) = 62 (5.201)
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Eqns. 5.192 to 5.199 show the large dependency of all associated units on the
TimeWord data-type. This is predictable for the STC, ISA and REG units: by
definition the STC manages the timing and synchronisation aspects of the system,
the ISA configures and manages that unit, while the REG is needed for temporarily
holding timestamps during configuration.

As for the SBC unit, however, the TimeWord data-type is used for managing the
buffering functions in a timely manner. By doing so, the SBC unit is decoupled from
the STC unit. Another approach would be to let the STC unit manage the timing
aspects of the SBC unit. This would introduce a design and modelling complication,
but is expected to reduce the complexity of the SBC unit with respect to TS. It
also means that both the SBC and the STC units would be involved in a single I/O
operation.

Finally, the SComplex and CComplex equations of the top-level SYSTEM process
with respect to TS are demonstrated in Eqns. 5.202 and 5.204, respectively.

SYSTEMSComplex(TS) = 1073 + 8.8× 2TS + 0.2× 22×TS+ (5.202)

3356.7× 23×TS + 403.5× 24×TS + 17× 25×TS (5.203)

SYSTEMCComplex(TS) = 420.2 + 425× 22×TS + 6960.9× 23×TS+ (5.204)

889.8× 24×TS + 33.4× 25×TS (5.205)

5.5.1 Asymptotic Evaluation

Asymptotic components of the complexity formulae in Eqns. 5.180 to 5.191 are pre-
sented in Table 5.5.

Process REG ISA SBC STC DDC SYSTEM

SComplex(DS) ∈ O(2DS) O(2DS) O(2DS) O(1) O(1) O(22×DS)

CComplex(DS) ∈ O(2DS) O(22×DS) O(2DS) O(1) O(1) O(22×DS)

Table 5.5 Asymptotic Complexity of Processes by Varying DataSize

Similarly, asymptotic components of the formulae in Eqns. 5.192 to 5.205 are
presented in Table 5.6.

Table 5.5 shows the low dependence of the SYSTEM process on DS, which was
of O(22×DS), as opposed to the high dependence on the TS, which was of O(25×TS).
This demonstrates the high quality of the associated CSP description and its low
dependence on DS.
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Process REG ISA SBC STC DDC SYSTEM

SComplex(TS) ∈ O(2TS) O(2TS) O(22×TS) O(23×TS) O(1) O(25×TS)

CComplex(TS) ∈ O(2TS) O(22×TS) O(22×TS) O(23×TS) O(1) O(25×TS)

Table 5.6 Asymptotic Complexity of Processes by Varying TimeSize

It is clear from Table 5.6 that the complexity of the DDC unit is orthogonal to
TS, which proves the fact that the DDC unit is not functionally dependent on any
timing aspects. With respect to the complexity of the STC unit in comparison to
the results presented earlier in Table 4.10, it has been noticed that the complexity
increased by a factor of O(2TS). This is due to the introduction of a timestamp
function, which required the top-level STC process to keep an extra state variable of
type TimeWord, in addition to the target time of the operation and the current time.
The timestamping mechanism is seen as an extra architectural constraint imposed by
the design decision-making process.

Finally, the dependence of many configurable units on TS results in the high
dependence of the top-level SYSTEM construction on TS (with an asymptotic com-
plexity of O(25×TS)). Though the full complexity semantics of the CSP parallelism
and synchronisation operators are not clear at this stage, one could deduce from the
SYSTEM process construction in Eqn. 5.165 and from the synchronisation alpha-
bets that the TimeWord data-type has been used as a state variable in 5 different
interleaved states at the same time. For example: REG read or write, SBC output
delay or input delay, old STC timestamp, STC current time counter, and STC future
output or input time.

5.6 Summary

Through the consideration of various design and verification approaches from the top-
level configurable communication hierarchy to block level and instruction level archi-
tecture, the formal system presented in this chapter offers a solid design exploration
platform for the design and verification of communication systems and protocols.

A formal CSP description was provided, along with a brief description of the design
iterations involved such as complexity analysis, functional units optimisation and top-
level construction and synchronisation considerations. The final models described in
Section 5.3 showcase a selection of configurable units, configurations, as well as a
minimum arithmetic instruction set. These models demonstrate the building blocks
of the general purpose modelling system for communication protocols proposed in
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this thesis. Its use for formal modelling and verification of communication protocols
will be discussed in Chapters 6 and 7.

5.7 Future Work

It is of great importance to address the complexity and orthogonality issues arising
from the high dependency of many configurable units and the top-level system con-
struction on the TimeWord data-type. Once this is achieved, it would become more
practical to extend the system with more functional units and additional configura-
tions for the existing units.

A useful improvement to the complexity analysis performed in this chapter would
be to explore a change in the format of the complexity formulae to take into account
non-exponential aspects. Questions to be answered: would the non-exponential com-
ponents have additive or multiplicative implications on the exponential formulae?
Also, since these components would increase the complexity and the number of vari-
ables of the formulae, how would the GRG algorithm cope with such increase in
complexity?

All of the analysis methods in Section 5.5 used one DDC unit. It would be
interesting to perform complexity analysis and optimisation as the number of DDC

units increases.
The models discussed in this chapter could become an integral part of a formal

design exploration tool, which could be used in the design of both I/O Instruction
Set Architectures and communication protocols. This tool could define an abstract
protocol specification language at a level higher or equivalent to ISA, which could be
compiled into an ISA specification. The ISA specification can then be automatically
translated into CSP. This would be facilitated by the availability of a set of CSPM

libraries, reusable components and extendible interfaces similar to that which has
been presented in this chapter. All this would facilitate and speed up the exploration
and formal verification of larger systems.

Finally, it would also be interesting to explore the design of higher level abstrac-
tions, such as a multithreaded Instruction Set Architecture. Analysis of the possible
performance implications on the associated communication interfaces would be inter-
esting.
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CHAPTER 6

ISA-Oriented and Abstract Specification
of Communication Protocols

6.1 Motivation and Chapter Structure

Chapter 5 presented the formal specification of the configurable system along with its
instruction set. In this chapter, the use of such a configurable system for the modelling
of communication protocols is demonstrated. First, Section 6.2 discusses previous
attempts on modelling and model-checking individual communication protocols and
how those attempts fell short from providing a general model-checking framework
for communication protocols. Then Section 6.3 presents some preliminary definitions
that are used in the specification process.

Section 6.4 presents a CSP modelling and verification approach called: ISA-
Oriented Specification. This approach employs the instruction set modelled in Chap-
ter 5 in order to specify the collective functional and performance properties of the
selected communication protocols. This is achieved in two steps:

1. Static construction of the configurable blocks into the desired communication
system.

2. Dynamic configuration of the communication blocks through the use of ISA-
Oriented Specifications.

An additional proof of the validity of the ISA-Oriented Specification models is
needed. Independent and simplistic abstract models of the selected protocols are pre-
sented in Section 6.5. Those specifications are independent of all the technical details
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of the configurable system and the associated ISA-Oriented Specification approach.
The use of those abstract models for proving the conformance of the ISA-Oriented
Specification will become clear in Chapter 7.

Figure 6.1 highlights the abstract modelling of the communication protocols and
its position in the design and verification of the configurable communication system.

Abstract Protocols Specification

out

in

in

outProducer Consumer

Timer

tock

clk

Phy

Sender Receiver

Spec Sender Spec Receiver

Phy

Timer

UARTSPI

Producer ConsumerBuffer

Equivalent

Figure 6.1 Outline of the Abstract Protocol Specification Methodology

Each protocol can be specified at various abstraction levels where functional and
real-time details are added incrementally. A specification that captures both the
timing and functional aspects was selected. Error checking and fault tolerance spec-
ifications were not taken into account when verifying for conformance. More details
on the verification process are discussed in Chapter 7.

Two protocols (UART and SPI) are modelled in Sections 6.4 and 6.5. Whether the
specification is abstract or ISA-based, a protocol specification is split into a trans-
mitting process and a receiving process. Once the two are connected using the ap-
propriate interfaces, they form an abstract simplex communication channel. In the
SPI protocol, each device can send and receive at the same time giving rise to the
possibility of a full-duplex channel. For this reason, an SPI master is modelled only
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as a transmitter and the slave as a receiver. This will allow for the same verification
techniques to be applied for all the modelled protocols at all abstraction levels.

Finally, the summary and future work are discussed in Sections 6.6 and 6.7, re-
spectively.

6.2 Background

Previous attempts at formal modelling and model-checking of specific communication
protocol and hardware constructs are abundant in literature. Though this thesis is
mostly dedicated to the inception of a general formal modelling and model-checking
framework, a great insight has been gained from analysing the approaches used for
the verification of individual protocols. A discussion of the most relevant work is
introduced in this section.

Paliwoda and Sanders [72] used CSP in the modelling of the Sliding Window Pro-
tocol (SWP). The verification is performed by showing the equivalence of the detailed
protocol specification to a higher-level functional specification. It is a good demon-
stration of the strengths of CSP for specifying a communication protocol through
many levels of abstractions. This is because the SWP specification was structured
in terms of the simpler ABP protocol, which in turn was expressed in terms of the
Stop-and-Wait Protocol (SAWP). The work presented does not show the use of au-
tomated model-checking tools for verification purposes. It is clear that as the system
grows and more implementation details are added, the process becomes tedious and
hence automation becomes necessary.

May et al. [73] have used Occam in establishing the correctness of the microcode
produced for parts of the T800 transputer. The approach involved the derivation
of an implementation-level microcode program from a high-level specification repre-
sented in Occam [74]. Those two abstractions are shown to be equivalent through the
automated use of a sequence of refinements which apply some semantics preserving
transformations of Occam.

In a related development Barrett [75] has used CSP in the verification of the
T9000 transputer. In particular, the paper discusses the verification of the Virtual
Channel Processor (VCP) and the associated Transputer Link Protocol. Though
the work presented was mostly experimental, it was a good practical application
of CSP in the verification of hardware designs and communication protocols. It also
highlights the lack of industrial-strength tools and a gap between the formal modelling
and verification tools and the HDL implementation and simulation tools. However,
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since Barrett [75], various attempts at bridging the gap between formal verification
formalisms and HDLs have emerged. See [76–78] for more details.

The case studies highlighted so far address specific technologies and protocols
and, in some cases, they fine-tune those technologies for the verification of a specific
protocol or algorithm. They fall short of presenting a transferable framework for the
modelling and verification of communication protocols in general, which is the aim of
this thesis. The formal modelling of communication protocols is demonstrated in the
remainder of this chapter and the verification aspects are addressed in Chapter 7.

6.3 Preliminaries

In Section 5.3.1 the preliminaries for the whole modelling framework were presented.
In this section, the preliminaries defined are only relevant to the modelling of the
communication protocols in question. These will be shared amongst the ISA-Oriented
Specification in Section 6.4 and the Abstract Specification in Section 6.5.

UARTBitRate =uBR = 2.4× 106 bits per second (6.1)

startBit = 0 (6.2)

stopBit = 1 (6.3)

SPIBitRate = sBR = 4.8× 106 bits per second (6.4)

Eqns. 6.1 and 6.4 specify the bit-rate for the UART and SPI protocols, respectively.
Those will be used to calculate the timing information required for managing the STC

and SBC units in the ISA-Oriented Specification. They will also be used to generate
similar but independent timing information for the abstract specifications.

6.4 ISA-Oriented Specifications

Schneider [Chapter 5 and 7, 39] first describes Property-Oriented Specification which
specifies the allowable and prohibited behaviours a process can make on the form of
sets of allowable traces in the trace model. These sets of traces are appended with
refusal sets in the failure model, which are sets of events the process should not be
allowed to refuse.

Specifying a process behaviour on the form of sets of traces and refusals is then
extended to incorporate all allowable traces and refusals on the form of a CSP process
description. A process description corresponds to a set of traces that a process can
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exhibit. This rather philosophical extension of the traces and failures model to include
specification processes, as opposed to specification traces is called Process-Oriented
Specification. These specification processes are then used in the verification of the
system using the appropriate refinement model.

However, the system interface described in Section 5.3.5 is specified in terms of
an instruction set. Each instruction is a standalone CSP process. A sequence of
instructions is also a CSP process. If a specification process is limited to any sequence
of this special kind of processes (the instruction set), that specification shall be called
an ISA-Oriented Specification.

An ISA-Oriented Specification of a communication protocol is then seen as a well-
defined set of instruction sequences, a sequence of instructions for each subset of
protocol specifications. For example, a protocol specification could be split into a
transmitter and a receiver. Each could be modelled as a sequence of instructions.
The set of the two sequences could then be called: ISA-Oriented Specifications of
that protocol. This section presents the ISA-Oriented Specifications of selected com-
munication protocols. These specifications serve a number of purposes, listed below.

• Demonstration of a higher-level specification abstraction for CSP, which helps
bridge the gap between mathematical abstractions such asProperty and Process-
Oriented Specification and hardware modelling and implementation abstrac-
tions.

• Functional verification of the configurable communication system presented in
Chapter 5.

• Conformance verification of the configurable specification methodology pro-
posed in this thesis when verified against the standalone abstract specifica-
tions presented in Section 6.5. This conformance verification is demonstrated
in Chapter 7.

It must be noted, however, that the ISA-Oriented Specification alone is not suf-
ficient to specify a configurable communication interface. In addition to being used
to specify arithmetic and state variable manipulation operations (i.e. register file op-
erations), the ISA is also being used to specify configuration and communication
specification with the relevant configurable units, which in turn govern the overall
interactions of the communication system with the environment. For this reason, an
ISA specification is always associated with a system construction specification which
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specifies the required configurable units and their interfaces. This association will
become clear in the following sections. See Eqns. 6.20 and 6.35 for example.

Lowe [79] discussed an interesting extension to the CSPM model-checking tool set.
Lowe developed a verification framework and an associated tool called “Casper: A
Compiler for the Analysis of Security Protocols”. Casper provided a similar protocol
verification framework to the one discussed in this thesis, which was only relevant
to the analysis of security protocols. The ISA-Oriented Specification methodology
demonstrated in this section could serve as a proof of concept for a general specifica-
tion and verification tool that is capable of verifying the provided ISA specifications
of a communication protocol using an underlying CSP engine.

In an ISA-Oriented Specification environment for modelling real-time communica-
tion protocols, real-time assumptions are necessary. Some assumptions are protocol-
specific and will be specified in the relevant sections. Other assumptions could be
made about the overall system. For example; the system clock frequency (isaSysClk)
which specifies the number of tock events per second. This was arbitrarily defined as
follows:

isaSysClk = 19.2× 106Hz (6.5)

The ISA-Oriented Specifications of selected communication protocols follows.

6.4.1 Universal Asynchronous Receiver/Transmitter

The bit-rate (uBR) was defined in Section 6.3. Using uBR, the number of tock events
per bit (UARTClkPerBit) could be defined as follows:

UARTClkPerBit =uCPB = isaSysClk/uBR (6.6)

First, using only an STC unit to manage the timing specifications and a DDC

unit for managing the physical interface, the following unbuffered ISA Specifications
of UART could be defined.

6.4.1.1 Unbuffered Receiver

At the start of any ISA-Oriented Specification, the BOOTCODE is used to initialise
system state variables and registers. Then the instruction sequence UARTin-start spec-
ifies an infinite receiving process. The process is provided with an I/O port sequence,
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which represents an interface to the associated DDC unit. The start-bit is identified
by a conditional input of the value zero. Then the timestamp of the start-bit is ob-
tained from the STC unit. It must be noted that the STC unit is by default attached
to port0. Then the next sampling time is calculated by adding 1.5 bit-time to the
time of the start-bit. This is equivalent to sampling the first data bit at the halfway
point. Additional timing specifications, such as set-up time and hold time could be
added if necessary. Finally, the Bitin instruction sequence is used to initiate the input
of DS data bits, which is by default stored in the word register (wReg0 ).

UART = BOOTCODE ; (6.7)

UARTin-start(port0) (6.8)

UARTin-start(rxPort) = (6.9)

CONDIN(rxPort, startBit); (6.10)

STMPREAD(stcT ime, tReg0); (6.11)

ADD(tReg0, (uCPB + uCPB/2) mod 2TS, IDelay); (6.12)

Bitin(DS) (6.13)

Bitin(bitCount) = (6.14)

UARTin-stop if bitCount=0

TMDIN(tReg0, bReg0);

SHIFTR(wReg0, bReg0, IDelay);

ADD(tReg0, uCPB mod 2TS, IDelay);

Bitin(bitCount− 1)


otherwise

(6.15)

The Bitin is specified in a hybrid ISA and Process-Oriented Specification merely
due to the lack of an additional register to hold the data count value. This is done so
as to reduce the complexity of the ISA instruction set and the associated register file.
Hence the data bit counter is held as a process variable for the Bitin process. While
the bit-count is not zero, a timed input is performed the time of which is specified
in the time register (tReg0 ). The timed input instruction stores the input data value
in the data register (bReg0 ) which is then shifted into the word register (wReg0 )
using the SHIFTR instruction. Finally, a single bit-time (uCPB) is added to the time
register and the Bitin process is called recursively decreasing the bit-count in each
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iteration. When the bit-count reaches zero, the Bitin passes control to the UARTin-stop

process.

UARTin-stop = TMDIN(tReg0, bReg0); (6.16)

TEST(bReg0, stopBit,UARTin-finish, STOP, IDelay) (6.17)

UARTin-finish = PUT(consume,wReg0); (6.18)

UARTin-start (6.19)

The UARTin-stop performs the last timed input operation representing the stop-bit
which must have the value 1 if the transmitting process was correct. This is ensured
using the TEST instruction, which deadlocks using the STOP process if the stop-bit
is not observed. Otherwise, UARTin-finish sends the input data which is now stored in
wReg0 to the consume channel, using the PUT instruction and operation continues
with the UARTin-start process.

UARTISA-RX = ((UART ‖
aReg

REG) ‖
aStc

STC 0) ‖
aDdc

DDC0 (6.20)

A system construction of an ISA-Oriented Specification for a UART receiver is
demonstrated in Eqn. 6.20, which synchronises the UART process with a register file
(REG), an STC unit and a DDC unit.

6.4.1.2 Unbuffered Transmitter

UARTOUT = BOOTCODE ; (6.21)

UARTout-start(port0) (6.22)

UARTout-start(txPort) = (6.23)

GET(produce, wReg0); (6.24)

RAWOUTV(txPort, startBit); (6.25)

STMPREAD(stcT ime, tReg0); (6.26)

ADD(tReg0, uCPB mod 2TS, IDelay); (6.27)

Bitout(DS) (6.28)

The receiver side of a UART interface starts similarly with the BOOTCODE, then
the UARTout-start receives the data word to be transmitted from the produce channel
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(GET), outputs the start-bit (RAWOUTV) and reads the timestamp of the start-bit
(STMPREAD). A single bit-time is added to the time register, followed by the Bitout
process:

Bitout(bitCount) = (6.29)

UARTout-stop if bitCount=0

SHIFTL(wReg0, bReg0, IDelay);

TMDOUT(tReg0, bReg0);

ADD(tReg0, uCPB mod 2TS, IDelay);

Bitout(bitCount− 1)


otherwise

(6.30)

Bitout outputs bitCount data bits from the data word register (wReg0 ). This is
achieved through shifting one bit at a time into the data register (bReg0 ), followed by
a timed output operation. Finally, one bit-time is added to the time register and the
process is repeated. Once all data bits have been output, the process passes control
to the UARTout-stop process.

UARTout-stop = INIT(bReg0, stopBit, IDelay); (6.31)

TMDOUT(tReg0, bReg0); (6.32)

NOPS(uCPB/IDelay); (6.33)

UARTout-start (6.34)

The UARTout-stop initialises the data register with the value of the stop-bit, then
performs a timed output of that value. A mechanism to ensure that the duration of
the stop-bit has elapsed before the transmission of the next data item is implemented
using the NOP instruction. The process then proceeds to the next data item for
transmission.

UARTISA-TX = ((UARTOUT ‖
aReg

REG) ‖
aStc

STC 0) ‖
aDdc

DDC0 (6.35)

A system construction of the UART transmitter is demonstrated in Eqn. 6.35.
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6.4.1.3 Buffered Receiver

A buffering unit is used to serialise all data bits in a buffered ISA-Oriented Specifica-
tion of the UART protocol. Such a buffered specification is considerably simpler than
the unbuffered specification, because all data I/O is managed by the SBC unit itself
and the inner recursive processes of Eqns. 6.15 and 6.30 of the unbuffered specifica-
tions are eliminated.

This section demonstrates a buffered UART receiver that uses an SBC unit.

UARTin-buffered = BOOTCODE ; (6.36)

UARTin-buf -start(port0) (6.37)

UARTin-buf -start(rxPort) = CONDIN(rxPort, startBit); (6.38)

NOPS(uCPB/IDelay − IDelay); (6.39)

BUFIN(uCPB,wReg0); (6.40)

PUT(consume,wReg0); (6.41)

RAWIN(rxPort, bReg0); (6.42)

TEST(bReg0, stopBit,UARTin-buf -start, STOP, IDelay) (6.43)

In Eqn. 6.38, similar to the unbuffered specification, the data input process is
initiated by receiving the start-bit using the CONDIN instruction. Then using the
NOP instruction, the buffering operation is delayed for the duration of the start-bit.
Then the BUFIN instruction is used to configure the buffering unit for an input of a
data word using an inter-bit delay of uCPB. Finally, the input data is forwarded to
the consume channel and the stop-bit is observed as before.

UARTISA-BUF-RX = ((UARTin-buffered ‖
aReg

REG) ‖
aSbc

SBC 0) ‖
aDdc

DDC0 (6.44)

A system construction of a buffered UART receiver is demonstrated in Eqn. 6.44.

6.4.1.4 Buffered Transmitter

UARTout-buffered = BOOTCODE ; (6.45)

UARTout-buf -start(port0) (6.46)
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UARTout-buf -start(txPort) = (6.47)

GET(produce, wReg0); (6.48)

RAWOUTV(txPort, startBit); (6.49)

NOPS(uCPB/IDelay − IDelay); (6.50)

BUFOUT(uCPB,wReg0); (6.51)

RAWOUTV(txPort, stopBit); (6.52)

NOPS(uCPB/IDelay − IDelay); (6.53)

UARTout-buf -start (6.54)

The transmitter side of a buffered ISA-Oriented Specification of the UART protocol
is demonstrated in Eqn. 6.45. Once the start-bit is transmitted in a similar manner
to the unbuffered specification, the BUFOUT instruction is used to configure the SBC

unit for buffered output. BUFOUT instruction does not finish until all data bits have
been serialised on the associated DDC unit. Then the stop-bit is transmitted using
the RAWOUTV instruction.

UARTISA-BUF-TX = ((UARTout-buffered ‖
aReg

REG) ‖
aSbc

SBC 0) ‖
aDdc

DDC0 (6.55)

The system construction of a buffered UART transmitter then synchronises the
UARTout-buffered process with a register file, an SBC unit and a DDC unit. This is
demonstrated in Eqn. 6.55.

It is plausible that two independent ISA-Oriented Specifications are equivalent if
both the functional and the performance specifications are equivalent. For example,
under certain performance conditions, the buffered ISA-Oriented Specifications of
a UART interface could be equivalent to the unbuffered specification. This possible
equivalence will be explored in Section 7.9.

6.4.2 Serial Peripheral Interface Bus

The SPI protocol requires additional DDC units. Specifications of the chip select
signal are omitted for simplicity. Therefore, only three ports and their associated
DDC units are used: system clock (clk), Master Output Slave Input (mosi) and
Master Input Slave Output (miso). In theory, both Master and Slave devices are
capable of transmitting and receiving data at the same time enabling a full-duplex
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communication channel. However, in the specification that follows, only a simplex
channel of information is modelled with the miso signal not being fully modelled.
This should be sufficient to establish the functional and performance correctness of a
simplex channel, which is the main focus of Chapter 7.

Prior to defining the ISA-Oriented Specification of the SPI protocol, the follow-
ing definitions are made: DDC3-bit combines all the DDC units required by the SPI

protocol into a single 3 bit wide DDC unit with interfaces port0, port1, and port2.
SPIClkPerBit (also defined as sCPB) defines the number of tock cycles per SPI data bit.
Finally, aDdc3Bit defines the synchronisation interface for the DDC3-bit process.

SPIClkPerBit = sCPB = isaSysClk/sBR (6.56)

aDdc3Bit = {|ddcCtrl0, isaIn0, isaOut0|} (6.57)

∪ {|ddcCtrl1, isaIn1, isaOut1|} (6.58)

∪ {|ddcCtrl2, isaIn2, isaOut2|} (6.59)

∪ {|stcCtrlDdc|} (6.60)

∪ {tock} (6.61)

DDC3-bit = (DDC0 ‖
{tock}

DDC1) ‖
{tock}

DDC2 (6.62)

The ISA-Oriented Specifications of an SPI master and an SPI slave are discussed
in Sections 6.4.2.1 and 6.4.2.2, respectively.

6.4.2.1 Master

SPImaster = BOOTCODE ; (6.63)

SPImaster-start(port0, port1, port2) (6.64)

SPImaster-start(clk,miso,mosi) = (6.65)

GET(produce, wReg0); (6.66)

RAWOUTV(clk, 0); (6.67)

STMPREAD(iT ime, tReg0); (6.68)

SPImaster-bit(miso,mosi); (6.69)

SPImaster-word(clk,miso,mosi,DS−1) (6.70)
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SPImaster-bit(miso,mosi) = SHIFTL(wReg0, bReg0, IDelay); (6.71)

RAWOUT(mosi, bReg0); (6.72)

ADD(tReg0, sCPB/2 mod 2TS, IDelay); (6.73)

SPIclk-high ; (6.74)

RAWIN(miso, bReg0); (6.75)

ADD(tReg0, sCPB/2 mod 2TS, IDelay) (6.76)

SPIclk-high = INIT(bReg0, 1, IDelay); (6.77)

TMDOUT(tReg0, bReg0) (6.78)

SPIclk-low = INIT(bReg0, 0, IDelay); (6.79)

TMDOUT(tReg0, bReg0) (6.80)

A master transmission cycle starts with driving the clock low in Eqn. 6.67. Then
the timestamp of the negative edge of the clock is read. Then the first data bit to be
transmitted is shifted into the data register, which is then output on the mosi port
in Eqn. 6.72. Then at the halfway point of the first bit, the clock is driven high in
Eqn. 6.74. Finally, the data bit received on the miso port is read in Eqn. 6.75.

The first cycle of a word transmission differs from subsequent cycles in the fact
that the start of the clock cycle is not bound by any timing conditions, hence the
use of the RAWOUTV for initiating that cycle. Subsequent cycles start by a TMDOUT

instead, as can be seen in Eqn. 6.81.

SPImaster-word(clk,miso,mosi, count) = (6.81)
SPIclk-low ; SPImaster-bit(miso,mosi);

SPImaster-word(clk,miso,mosi, count− 1)

}
if count 6= 0

SPImaster-cycle ; SPImaster-start(clk,miso,mosi) otherwise

(6.82)

SPImaster-cycle = SPIclk-low ; (6.83)

ADD(tReg0, sCBP/2 mod 2TS, IDelay); (6.84)

SPIclk-high ; (6.85)

ADD(tReg0, sCBP/2 mod 2TS, IDelay); (6.86)

SPIclk-high (6.87)
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Finally, once the data counter (count) reaches zero, then the specification allows
for an empty bus cycle before the transmission of the next data word can begin.

SPIISA-MASTER = ((SPImaster ‖
aReg

REG) ‖
aStc

STC 0) ‖
aDdc

DDC3-bit (6.88)

A system construction of an SPI master device is defined in Eqn. 6.88.

6.4.2.2 Slave

SPIslave = BOOTCODE ; (6.89)

SPIslave-word(port0, port1, port2,DS) (6.90)

An ISA-Oriented Specification of a slave is much simpler than the master, because
the slave is not responsible for driving the clock signal.

SPIslave-word(clk,miso,mosi, count) = (6.91)

CONDIN(clk, 0);

RAWOUTV(miso, 0);

CONDIN(clk, 1);

RAWIN(mosi, bReg0);

SHIFTR(wReg0, bReg0, IDelay);

SPIslave-word(clk,miso,mosi, count− 1)


if count 6= 0

PUT(consume,wReg0);

CONDIN(clk, 0);

CONDIN(clk, 1);

SPIslave-word(clk,miso,mosi,DS)


otherwise

(6.92)

A data cycle starts by observing the negative edge of the clock. Subsequently, the
data is typically output on the miso port in a full-duplex specification. For simplicity
the slave transmits zero in the specifications above. Then, once the positive edge of
the clock is observed, the mosi port is read and the received data bit is shifted into
the word register. Once a full data word has been received, the word is forwarded
along the consume channel using the PUT instruction. Finally, an empty bus cycle
is observed and the process proceeds to the reception of the next data word.
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SPIISA-SLAVE = ((SPIslave ‖
aReg

REG) ‖
aStc

STC 0) ‖
aDdc

DDC3-bit (6.93)

A system construction of an SPI slave device is defined in Eqn. 6.93.

6.4.3 Results

The ISA-Oriented Specification technique reduces the complexity of the analysed con-
figurable system considerably. The number of all possible sequences of configurations
is reduced to those of essential interest. These are the configurations corresponding
to the selected functional and performance requirements of the protocols in question.
Table 6.1 summarises the metrics for all ISA Specifications presented in this chapter.

DataSize 1 2 3 4 5
States 5122 12034 28226 65346 149058

UARTISA-RX Trans. 8658 20370 47890 111122 253970
States 541 1231 2611 5371 10891

UARTISA-TX Trans. 638 1442 3050 6266 12698
States 3114 7946 22794 73226 257034

UARTISA-BUF-RX Trans. 5130 13082 37626 121274 426810
States 673 1723 4335 10967 28583

UARTISA-BUF-TX Trans. 770 2030 5302 14118 39366
States 1914 9914 6058 47450 49914

SPIISA-MASTER Trans. 3950 20430 12522 97758 102950
States 9762 34306 99074 259970 644482

SPIISA-SLAVE Trans. 26106 90618 260602 682490 1690106

Table 6.1 Metrics of ISA-Oriented Specifications by Varying DataSize

Table 6.1 shows how the models grow as the size of the DataWord set (DS) grows
while fixing the size of the TimeWord set to an arbitrary value (TS = 3). The table
shows the metrics of the fully constructed systems in Eqns.6.20, 6.35, 6.44, 6.55, 6.88
and 6.93 and not only the ISA-Oriented Specifications.

If the metrics of the UART receiver (UARTISA-RX) in Table 6.1 are compared to
the unconfigured one bit system (SYSTEMone-bit) in Table 5.1, it is evident that the
complexity metrics are reduced by a factor of 400. Another interesting conclusion from
Table 6.1 is the marginal increase in complexity that the use of the SBC unit has. It
increased the metrics of the UARTISA-BUF-TX compared to the metrics of UARTISA-TX
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slightly. The increase in not linear. For example, at DS = 1, the buffered metrics
were 1.2 times the unbuffered ones. When DS = 5, the factor grows to 3.1.

In any case, because the complexity of the configured system is significantly re-
duced compared to the unconfigured system, a complete complexity analysis similar
to Section 5.5 was not necessary.

6.5 Abstract Specifications

Abstract protocol specifications are required mainly for conformance verification:
proof that the ISA-Oriented Specifications described is Section 6.4 conform to a spec-
ification which is independent from the technical details of the configurable system.
Such independent specifications must not rely on any configurable units to establish
the specifications of the communication protocol.

To simplify the specification process, a simple timer and a simple physical interface
are first defined. Then the abstract specifications of both the UART and SPI protocols
are provided.

The shared preliminaries which were presented in Section 5.3 shall be made avail-
able to this specification process. In addition, the preliminaries provided in Section 6.3
shall also be available here.

One additional preliminary definition that is only specific to abstract protocol
specifications is sTS : the time unit size in bits. The value of sTS depends on the
target protocols and the duration of the longest transaction. For the verification of
the protocols presented in this chapter using the bit-rates defined earlier, sTS = 3

was sufficient.

6.5.1 Abstract Timer

Tock-CSP is deployed in a simplistic manner in order to provide timing information
at the protocol specification level: only one process is responsible for executing tock
events (called SpecTimer). All other processes in the abstract specifications synchro-
nise with the SpecTimer process on other events such as reset, set and trigger to
establish timing information, but not on tock. This results in an implicit synchroni-
sation on tock. Consequently, the required timing information for other specification
processes is implicitly provided.

The processes and data-types used in the definition of the SpecTimer are:
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• sTime, or specification time, which is a data-type used to specify events com-
municated by the SpecTimer process;

• sTData, or specification timer data set, which is the set of values that can be
used to represent time; and

• SpecTimer : which is the top-level timer process.

Below is the CSP description of the SpecTimer, its subprocesses and related data-
types:

sTData = {0 . . (2sTS − 1)} (6.94)

datatype sT ime = trigger | set.sTData | reset (6.95)

SpecT imer(timer) =STimer(0, timer) (6.96)

STimer(t, timer) = tock → STimer(inc(t, 2sTS), timer) (6.97)

2 timer?reset→ STimer(0, timer) (6.98)

2 timer.set?check → TCheck(t, check, timer) (6.99)

TCheck(t, c, timer) = (6.100){
timer!trigger → STimer(t, timer) if t = c

tock → TCheck(inc(t, 2sTS), c, timer) otherwise
(6.101)

At system level, any component or process which uses the SpecTimer must syn-
chronise with other components over tock, because they do not share the same Spec-
Timer process. This is due to the fact that there is not a global notion of time in the
current CSP models. By synchronising all system components using tock (or other
events that are directly generated from tock and available to all components), a global
notion of time is established. This results in the following conundrum: the UART pro-
tocol discussed in this chapter is an asynchronous protocol, and in theory there is
no need for exchanging timing information between the transmitter and the receiver,
both only have to agree on the bit-rate. However, when modelling this aspect using
tock-CSP and because there is no global notion of time, each process or subsystem
that has real-time aspects cannot be modelled in a completely asynchronous manner
from other system components. They all have to synchronise on tock events, whether
explicitly using the actual tock event in the synchronisation alphabet, or implicitly
synchronising on another event which is relative to tock such as the set and trigger
events above.
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Future implementations of tock-CSP verification models might have a global no-
tion of time, in which case tock events become global to all processes. In that case
explicit synchronisation on timing events becomes unnecessary.

6.5.2 Universal Asynchronous Receiver/Transmitter

Different abstraction levels were investigated where timing and functional details were
added incrementally. The abstraction demonstrated in this section has been selected
in such a way that all timing information is present.

The number of tock events per bit (uCPB) defined in Section 6.4.1 is used in this
section to trigger events in the SpecTimer process. This is due to the conundrum
described earlier, where all system components, whether specified using the ISA-
Oriented Specification or abstractly as in this section must synchronise on tock events.

6.5.2.1 Receiver

The abstract specification of a UART receiver (USR) is modelled as a sequence of events
on a CSP channel called UARTin, which represents the physical interface connection.
The receive process is then defined as an infinite input of data words.

channel rxT imer : sT ime (6.102)

channel UARTin : Data (6.103)

USR(timer) = UARTin?startBit→ timer!reset→ (6.104)

USTi(DS, 0, ((uCPB × 3)/2 mod 2sTS, timer) (6.105)

USRi(c, w, t, tr) = (6.106)
tr.set!t→ consume!w → tr?trigger →

UARTin?stopBit→ USR(tr)

}
if c = 0

tr.set!t→ tr?trigger → UARTin?b→

USRi(c− 1, sright(b, w), (t+ uCPB) mod 2sTS, tr)

}
otherwise

(6.107)

The receiver waits for the start-bit to appear (UARTin?low), at which point it sets
the SpecTimer with duration 1.5× uCPB. This is done in order to skip the start-bit
and sample the first data bit at the midway point. Once the first data bit is input, the
receiver sets the timer to trigger after uCPB tocks and inputs the next data bit. The
process is repeated until the number of bits input is equal to DS. Finally, the received
data word is forwarded to the consume channel before the stop-bit is observed. It
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is essential that forwarding the data word happens before the stop-bit is observed
to enforce this forwarding action to happen in a specific time-frame. Otherwise, the
specification would allow for an arbitrary number of clock cycles to elapse before the
forwarding happens, in which case the receiver would miss any subsequent data words
sent by the transmitter.

UARTSPEC-RX = (6.108)

(USR(rxT imer) ‖
{|rxT imer|}

SpecT imer(rxT imer)) \ {|rxT imer|} (6.109)

Eqn. 6.108 shows the construction of the top-level UART receiver (UARTSPEC-RX)
by synchronising the USR process with a SpecTimer process over the timer commu-
nication channel (rxTimer).

6.5.2.2 Transmitter

Similarly, the transmitter (UST) is modelled as a sequence of events on a CSP chan-
nel called UARTout, which represents the connection to the physical interface. The
transmitter process is then defined as an infinite transmission of data words.

channel txT imer : sT ime (6.110)

channel UARTout : Data (6.111)

uCPB = UARTClkPerBit (6.112)

UST(timer) = produce?word→ UARTout!startBit→ timer!reset→ (6.113)

USTout(DS, word, uCPB, timer) (6.114)

USTout(c, w, t, tr) = (6.115)
tr.set!t→ tr?trigger → UARTout!stopBit→

tr.set!((t+ uCPB + 1) mod 2sTS) ; UST(tr)

}
if c = 0

tr.set!t→ tr?trigger → UARTout!(w mod 2)→

USTout(c− 1, w/2, (t+ uCPB) mod 2sTS, tr)

}
otherwise

(6.116)

The transmission of a data word in Eqn. 6.113 starts with the start-bit, followed by
a timer reset command (timer!reset). Using the SpecTimer events set and trigger, all
data bits are output serially (UARTout!(w mod 2)), which are separated by a number
of tock events equivalent to uCPB. Finally, the transmission ends in Eqn. 6.116 with
the stop-bit (UARTout!high).
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UARTSPEC-TX = (6.117)

(UST(txT imer) ‖
{|txT imer|}

SpecT imer(txT imer)) \ {|txT imer|} (6.118)

Eqn. 6.117 shows the construction of the top-level UART transmitter by synchronis-
ing the UST process with a SpecTimer process over the timer communication channel
(txTimer).

Figure 6.2 shows the waveform of the UARTSPEC-RX process in Eqn. 6.108. Simi-
larly, Figure 6.3 shows the waveform of the UARTSPEC-TX process in Eqn. 6.117. The
waveforms show the difference in timing between the Transmitter and Receiver since
the receiver samples at half the bit-time, while the transmitter triggers the data at the
start of the bit-time. The waveforms also show that the data values being transmitted
by UARTSPEC-TX on the produce channel are indeed being received by UARTSPEC-RX on
the consume channel. Finally, for demonstration purposes, the first data item to be
transmitted was selected to be 0b01. This means the DataWord transmission starts
by the start-bit of the UART protocol (0), followed by the first bit of the DataWord
(1), second bit (0), and finally, the stop-bit of the protocol (1).

The waveforms were automatically generated using the Tock-CSP Waveform Gen-
erator developed as part of this framework and discussed briefly in Section 7.8.1.1.
More details are available in Appendix B.

The traces used by the Tock-CSP Waveform Generator were obtained by adjusting
the Buffer ′ process in Assertion 7.86 to STOP after buffering 3 data items. This
caused the assertion to fail and a trace to be generated for demonstration purposes.
The traces were generated using the following parameters: uCPB = 4, sTS = 4 and
DS = 2.

6.5.3 Serial Peripheral Interface Bus

The SPI is a synchronous protocol in which a clock signal is exchanged. Abstractly
modelling SPI fits well into the simplistic tock-CSP modelling approach involving the
SpecTimer discussed in Section 6.3. The exchanged clock signal between the master
device and slave devices is generated using tock events, hence there is no need for
explicit synchronisation between different devices on tock events, which was the case
in the UART protocol.
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6.5.3.1 Master

For simplicity, the number of tock events per bus clock cycle (sCPB) specified in
Section 6.4.2 will be used in this section.

channel SPISpecClk, SPISpecMiso, SPISpecMosi : Data (6.119)

channel SPITM : sT ime (6.120)

sSClk = SPISpecClk (6.121)

sSMiso = SPISpecMiso (6.122)

sSMosi = SPISpecMosi (6.123)

SSM(timer) = produce?data→ timer!reset→ (6.124)

SSMw(data, 0,DS, timer, 0) (6.125)

When the master (SSM) receives a data word for transmission from the produce
virtual channel, it initiates the SPI data word transmission process (SSMw).

SSMw(oD, iD, c, tr, t) =

{
SSMfinish(tr, t) if c = 0

SSMb(oD, iD, c, tr, t) otherwise
(6.126)

SSMb(oD, iD, c, tr, t) = (6.127)

sSClk!low → sSMosi!(oD mod 2)→ (6.128)

tr.set!(add(t, sCPB/2, 2sTS))→ tr?trigger → (6.129)

sSClk!high→ sSMiso?b→ (6.130)

tr.set!(add(t, sCPB, 2sTS))→ tr!trigger → (6.131)

SSMw(oD/2, sright(iD, b), c− 1, tr, add(t, sCPB, 2sTS)) (6.132)

SSMfinish(tr, t) = (6.133)

sSClk!low → tr.set!(add(t, sCPB/2, 2sTS))→ (6.134)

tr?trigger → sSClk!high→ (6.135)

tr.set!(add(t, sCPB, 2sTS))→ tr!trigger → SSM(tr) (6.136)

The SSMb starts the bus cycle by driving the system clock low (sSClk!low),
followed by transmitting the data bit (sSMosi!(oD mod 2)). Then, using the in-
terface to the SpecTimer, the second phase of the cycle is started in Eqn. 6.129.
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Once the timer triggers, the clock is driven high (sSClk!high) and the data input
line is sampled (sSMiso?b). The timer is used again to signal the end of the cycle
(tr.set!(add(t, sCPB, 2sTS))) before the next cycle can start. This is repeated for the
number of bits per data word (DS). Finally, an empty bus cycle is allowed before the
transmission of the next data word can begin.

SPISPEC-MASTER = (SSM(SPITM) ‖
{|SPITM |}

SpecT imer(SPITM)) \ {| SPITM |} (6.137)

Eqn. 6.137 shows the construction of the top-level SPI master (SPISPEC-MASTER) by
synchronising the SSM process with a SpecTimer process over the timer communica-
tion channel (SPITM).

6.5.3.2 Slave

The slave bus cycle is simpler, because timing information is explicitly exchanged
using the sSClk signal and there is no need for the slave to maintain its own timing.

SSSw(c, oD, iD) = (6.138)

consume!iData→ sSClk?low →

sSClk?high→ SPISPEC-SLAVE

}
if c = 0

sSClk?low → sSMiso!(oD mod 2)→

sSClk?high→ sSMosi?b→

SSSw(c− 1, oD/2, sright(iD, b))

 otherwise

(6.139)

Using the same bus signals declared earlier (sSClk, sSMiso and sSMosi), the cycle
starts by observing a falling edge of the clock signal (sSClk?low), followed by an
output of the first data bit on the sSMiso signal. Then, at the rising edge of the clock
(sSClk?high), the slave inputs the data bit arriving from the master (sSMosi?b).
The process is repeated for all data bits in the transmission (DS times). Finally,
when a full data word is received, the slave outputs that word on the virtual consume
channel.

SPISPEC-SLAVE =SSSw(DS, 0, 0) (6.140)

Eqn. 6.140 shows the top-level SPI slave process (SPISPEC-SLAVE) in which no Spec-
Timer process is needed.
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Figure 6.4 shows a waveform synchronising SPISPEC-MASTER in Eqn. 6.137 and
SPISPEC-SLAVE in Eqn. 6.140. The figure shows the transmission of three consecu-
tive data words 0b01, 0b10 and 0b10. The construction of a communication pipeline
involves the use of an intermediate process to hold the MOSI signal values and de-
couple the master from the slave. This is depicted in Figure 6.4 by the presence of
two MOSI signals, sMosi triggered by the master and midMosi inputted by the slave.
As the figure shows, there is a time lag between the two signals and hence the need
for the decoupling process. Unlike the UART protocol, there is a need for only one
SpecTimer process, since the timing in the SPISPEC-SLAVE process is being managed by
the exchanged sSClk signal. The parameters used for this demo were: sCPB = 12,
sTS = 4 and DS = 2.

Finally, the exact signal names on the waveforms in Figures 6.2, 6.3 and 6.4 might
differ slightly from those in the associated CSP processes described earlier, since the
waveforms have been automatically generated from the CSPm scripts.

6.6 Summary and Conclusion

The selected communication protocol specifications presented in this chapter serve
a number of objectives. First and foremost, the protocol specifications presented in
Section 6.4 demonstrate the ISA-Oriented Specification technique, which is based on
the configurable system presented in Chapter 5 and its associated instruction set. It
shows that a single protocol could be specified in a number of ways that vary in terms
of the internal implementation details.

However, because the specifications presented in Section 6.4 include real-time re-
quirements, two functionally equivalent specifications might differ from a performance
perspective, as will be demonstrated in Sections 7.8 and 7.9. Using different config-
urable units in two independent specifications to specify the same protocol as demon-
strated in Sections 6.4.1.1 and 6.4.1.3 shows how advanced constructs (such as the
SBC unit) simplify the associated ISA-Oriented Specifications. Complex configurable
units with simplified ISA-based interfaces provide powerful specification, exploration,
and verification tools for designers of communication protocols. The support of an
ISA interface for formal verification would be highly valuable for bridging the gap be-
tween the formal analysis community and the hardware design and implementation
community.

The simplistic functional and real-time protocol specification technique discussed
in Section 6.5 provides another outlook on the application of tock-CSP in the mod-
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elling of a real-time system. The abstract specifications presented should be essential
for verifying the correctness of the associated ISA-Oriented Specifications. Section 6.5
also highlighted the difference between modelling synchronous and asynchronous in-
terfaces in tock-CSP, where in the latter both the transmitter and receiver have to
synchronise on the built-in system timing event (tock), while this is not the case for
synchronous interfaces, because an explicit clock signal is exchanged.

6.7 Future Work

Future work includes modelling all the technical details of the selected protocols and
the investigation of the functional, performance and complexity issues that such de-
tails might introduce. Including the details of the idle state where communication
interfaces are not engaged in transmission or reception is expected to have impli-
cations on the ISA-Oriented Specification instruction set, as well as the verification
approaches used in Chapter 7. Also, adding the full details of the SPI protocol would
subsequently require the construction and verification of a complex bidirectional com-
munication channel.

It would also be interesting to investigate other communication protocols such as
an asynchronous handshake protocol and the additional requirements those protocols
would add to the modelled configurable units.

Finally, the ISA-Oriented Specifications could be further developed into an in-
dependent verification library. Such a library would have an ISA specification and
verification interface and would rely on an underlying tock-CSP engine similar to that
which has been presented in Chapter 5. Furthermore, it would be very interesting
if the underlying tock-CSP engine was automatically translated into an HDL repre-
sentation similar to the work done by Ostroumov et al. [78] and Treharne et al. [76].
Doing so would provide two cornerstones towards the grand challenge of building a
formally verified stack as discussed by Hoare et al. [46] and Moore [80].
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CHAPTER 7

Formal Verification using
Refinement Model-Checking

7.1 Motivation

This chapter presents the formal verification of the concrete configurable communi-
cation system modelled in Chapter 5, using the relevant model-checking techniques,
tools and abstractions. Through the detailed analysis of the modelled system and
protocols, a great level of understanding of the relationship between the intended
specifications and the formal model is established. However, it is also of great impor-
tance that the intended functions of the concrete configurable system are rigorously
verified through model-checking each of the various models against abstract specifi-
cations of each modelled aspect or property.

The formal verification process progresses from basic timing and functional checks
of the individual configurable units in Section 7.3 through to basic verification of the
different protocol ISA-Oriented Specifications and abstract protocol specifications in
Sections 7.4 and 7.5, respectively. Then, in Sections 7.6 and 7.7, complex communica-
tion channels are constructed, using a transmitter and a receiver of a communication
protocol specified at the same abstraction level (i.e. ISA vs. abstract). Those complex
constructions are model-checked and proved to be equivalent to a simple asynchronous
abstraction of a communication protocol: a single-entry buffer.

In Section 7.8, the performance specifications of the complex channel construc-
tions are verified. The abstract view of a communication protocol as an asynchronous
single-entry buffer is modified to add clocking information. The intended latencies
of the communication protocols are specified using this synchronous buffer. Then, in
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Section 7.8.1, the latency specifications of the complex channels are checked against
the intended latencies of the respective protocols. Section 7.8.1 also explores the pos-
sible use of the ISA-Oriented Specification methodology for providing the required
latency specifications. The section briefly discusses the Tock-CSP Waveform Gen-
erator, which was instrumental in evaluating the performance specifications of the
complex channels.

Another important performance aspect is the throughput of the constructed com-
plex channels. This could be useful for checking the overhead that a specification
style could introduce on the set-up of the transmission/reception process. Such an
overhead might not be apparent in the latency specification. In addition, in some
situations there might be a level of non-determinism in the latency specification, in
which case the throughput specification could be used to assess the performance of
the channel. Section 7.8.2 model-checks the throughput specifications of the complex
communication channels.

In addition to independently verifying selected functional and performance as-
pects of the different specification styles independently, the conformance of the ISA-
Oriented Specifications to the abstract protocol specifications is further analysed in
Section 7.9. Different specification styles are multiplexed into constructing a set of
complex conformance channels, which are then functionally verified in a way simi-
lar to the verification of the uniform complex channels demonstrated in Sections 7.6
and 7.7.

Finally, Sections 7.10 and 7.11 present a brief summary and the possible future
work.

7.2 Background

The CSP model-checking framework provides a robust platform for verifying dif-
ferent aspects of a design progressively. It allows the specification and subsequent
verification of a model at various abstraction levels: a model could be specified with
minimum details; such specifications often serve as a top-level specification. Then
the models evolve by adding various implementation details. Automatic verification
through model-checking could check that the more complex models with added de-
tails still conform to the top-level specification. This is done by establishing a suitable
refinement relation between the different models.
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7.2.1 Refinement Models

The refinement models are algorithms and a set of laws that govern the checks per-
formed in a model-checking framework. Each model addresses one or more refinement
relations between two processes. This section describes selected refinement models,
which were instrumental in the evaluation process of the configurable communication
system.

7.2.1.1 Traces Refinement Model (T )

In this model, each process is represented as a finite set of traces of events the process
can execute. These sets of traces represent the behaviour of the process up to a
certain point in time. This is typically written as a comma-separated sequence of
events enclosed in angle brackets. For example:

• traces(STOP) = {〈〉} where 〈〉 is an empty sequence of events;

• traces(a→ b→ STOP) = {〈〉, 〈a〉, 〈a, b〉} which means at the start, the process
may not have communicated any events yet, may have communicated event a
only, or may have communicated event a followed by event b; and

• traces(a → STOP 2 b → STOP) = {〈〉, 〈a〉, 〈b〉} where the process has the
choice of either executing event a or event b, or it could also not have commu-
nicated any event at all yet.

A model-checker can determine in advance the set of all possible traces of a pro-
cess by automatically analysing the specifications of that process. The relationship
between different processes with respect to the traces they can execute is called trace
refinement. Hence, for checking that a process (Q) trace refines another process (P),
the set of traces that process Q can execute should be a subset of all possible traces
allowed by process P. Formally, this is written as:

P vT Q⇔ traces(P) ⊇ traces(Q) (7.1)

A trace refinement specification is said to be a safety specification, because it
ensures that a process never executes events that it is not allowed to execute. On
the other hand, the model cannot guarantee that any favourable events will happen.
This can be achieved using the Stable Failures Model, which is discussed next. The
Traces Refinement Model is well described by Brookes et al. [37] and Hoare [35].
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7.2.1.2 Stable Failures Model (F)

In addition to the traces that a process can execute, this model takes into account
the set of events that a process can refuse (X) after executing a specific trace (tr)
and reaching a stable state. A process is termed stable when it can no longer execute
internal events (τ). The set of events X is called a stable refusals set.

The following rules are some of the algebraic laws used for analysing processes for
their refusal sets.

• ∀P⇒ {} ∈ refusals(P): the empty set is a refusal set of all possible processes.
An empty refusal set simply means that a process does not refuse any event.

• Σ ∈ refusals(STOP): the set of all possible events (Σ) is a refusal set for the
STOP process. This simply means that the STOP process refuses to execute
any event.

• refusals(P 2 Q) 6= refusals(P u Q): refusals can distinguish between internal
and external choices. This is because an internal choice can decide to execute
one event and refuse the other, while an external choice must offer both and it
is up to the environment to decide which event to execute.

The tuple (tr,X) constituting the refusal set (X) of a process after executing a
specific trace (tr) is called a stable failure (or simply failure). A process Q refines
another process P under the Stable Failures Model, when the set of all stable failures
of the process Q is a subset of all possible stable failures of the process P. This is
written as:

P vF Q⇔ failures(P) ⊇ failures(Q) (7.2)

A stable failures refinement specification is said to be a liveness specification, in
addition to it being a safety specification, since it not only specifies that nothing illegal
can happen, it also specifies that something favourable will happen. This model is
useful for verifying the refinement relation between specification and implementation
processes. It is also useful for verifying deadlock freedom of processes. When this
property is performed abstractly without a reference to another specification process,
then it ensures that the process must always be able to perform externally visible
events (i.e. be live and not deadlocked). This model is also discussed in detail by
Hoare [35].
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7.2.1.3 Failures/Divergences Model (FD)

The Failures/Divergences Model is similar to the Stable Failures Model discussed
earlier, but adds the notion of divergence or livelock: the possibility of the process
to execute an infinite sequence of internal events (τ). A divergent process cannot
execute any external events. Such a process is said to be livelocked or divergent.

Formally, a divergence trace is a finite trace of events during or after which the
process can perform an infinite sequence of consecutive internal events.

The property that a process P is Failures/Divergences refined by the process Q is
written as:

P vFD Q⇔failures(P) ⊇ failures(Q) (7.3)

∧ divergences(P) ⊇ divergences(Q) (7.4)

More details about this model are discussed by Brookes and Roscoe [81].
The Failures/Divergences Model is considered to be more powerful than the Traces

Refinement Model or the Stable Failures Model because it can check a number of
properties: livelock freedom, deadlock freedom, as well as checking the safety and
liveness properties of a process if it is used in a refinement relation such as in Eqn. 7.3.

7.2.1.4 Tau Priority Model (τ)

This model is similar to the trace model described above, except that it adds the
notion of priority of events. A set of events is defined to have lower priority than
internal events (τ) and hence the process could not offer any event from this set,
unless it is in a stable state and cannot execute any internal events.

This model is useful for modelling the passage of time where all communication
events in the system must occur before the next clock event.

Consider this scenario as a motivation for the Tau Priority Model: because no
process in a parallel composition should be allowed to run faster than another, all
processes must synchronise on timing events (i.e. tock). Consequently, processes are
allowed to be idle and hence execute the tock event infinitely. However, for many
semantic reasons, including the avoidance of false divergences (i.e. ones where only
the tock event is involved), some events must have priority over tock.

A minimal approach for supporting priority of events is the Tau Priority Model,
which is currently implemented in FDR [18] Version 2.91, which is the latest release
as of August 2012.
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When using the Tau Priority Model, only internal events can have higher priority
over a selected set of external events (tock events in the case of tock-CSP). Let us
consider the following processes as an example:

P1′ = a→ b→ tock → P1′ (7.5)

P2′ = a→ b→ tock → P2′ 2 tock → P2′ (7.6)

P1 =P1′ \ {a} (7.7)

P2 =P2′ \ {a} (7.8)

One way to interpret the difference between the two processes P1’ and P2’ is that
process P2’ takes into account an idle state when event a is not available; in which
case, it can allow tock events to happen. Process P1’, however, must always be able to
execute event a immediately at the start, which makes event a an urgent event. The
details of this model can be found in [19, 38]. In particular, Ouaknine [82] highlights
the semantic difficulties that are encountered when syntactically translating Timed
CSP into tock-CSP. Most of those difficulties are adequately dealt with in the Tau
Priority Model.

Under the Tau Priority Model, the two processes above are understood to be
equivalent because, when run independently, both processes are able to execute the
event a at the start. Consequently, the choice to execute the tock event in process P2’
is ignored. However, the situation becomes more interesting when those processes are
composed in parallel in a wider system in which event a is not available at the start.
In this case, process P1’ would introduce what is called a time-stop: any point in the
execution of a process when tock events cannot happen. The process P2’ does not
suffer such a limitation.

The event a was hidden from the top-level processes P1 and P2 in the above
example since the Tau Priority Model is only able to prioritize internal events over
tock events.

The ability for some events to have less priority than others is useful in the context
of communication systems and signal propagation: all signals in the system need to
propagate and settle before the next clock event can happen. Processes which do
not have any signal change in that clock cycle should be able to execute clock events
gracefully.

The tock-CSP approach is a promising one. It integrates the modelling and veri-
fication of real-time performance aspects of embedded systems within the well under-
stood CSP functional model-checking techniques. This thesis presents an important
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contribution through the application of such an approach to a complex performance-
critical communication system.

Finally, the Tau Priority Model is somehow restrictive, since all events that should
have higher priority than the clock event must be modelled as internal. The notion
of urgent external events could be achieved under the Tau Priority Model by letting
an internal event (τ) proceed any external event that needs to have higher priority
than other external events (tock in this case). It would be interesting to see the Tau
Priority Model evolve and introduce the notion of priority to externally visible events
explicitly.

7.2.2 Verification of Timing Specifications

In this and subsequent sections, each CSP verification check is called an assertion.
Each assertion is represented by a mathematical equation and is referenced using the
word Assertion, similar to the use of the abbreviation Eqn. to reference mathematical
equations.

The notation used for describing the performed Assertions uses both the CSPM

interface of FDR [36], as well as the LATEX symbol macros for CSP, described in [40]
to achieve best readability.

Roscoe [38] discusses how timing specifications and constraints could be modelled
and verified using tock-CSP processes. In particular, Roscoe [83] discusses many
possible checks that could be performed on such processes. A brief discussion of
those checks follows.

Let us assume that Proc is a real-time process modelled using tock-CSP. Let us
also assume that all CSP events apart from special timing events (tock in the case
of this discussion) are classed as normal events (normal = Σ8{tock}). The following
assertions could be performed on such a process:

Proc \ (Σ8{tock}) divergence-free (7.9)

TOCKS vFD Proc \ (Σ8{tock}) (7.10)

Assertion 7.9 checks that there cannot be an infinite number of normal events
occurring between two special timing events in the system represented by the process
Proc. The ability of a physical system to execute an infinite number of events between
two finite clock events (i.e. in a finite time frame) is not possible and would defy the
laws of physics.
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Time-stops have been briefly discussed in Section 3.3.3. Assertion 7.10 checks the
absence of time-stops in the system and that time is always able to pass consistently.
In addition, Assertion 7.10 also checks that the system is divergence-free. The TOCKS

process used in Assertions 7.10 to 7.12 has been presented earlier in Eqn. 4.10.

TOCKS vFD (Proc ‖
Delayed

Chaos(Delayed)) \ (Σ8{tock}) (7.11)

TOCKS ||| Chaos(Delayed) vFD Proc \ (Σ8(Delayed ∪ {tock})) (7.12)

The Delayed set in Assertion 7.11 represents events that can potentially be delayed
indefinitely, but could also be allowed to execute at any time. Assertion 7.11 uses the
special CSP process Chaos to model the notion of delayable events. See [35, Chapter
3] for more information about Chaos. The assertion also uses the failures-divergences
refinement model to ensure timing consistency of Proc, as well as the absence of time-
stops. The Chaos process could choose not to block the execution of an event in
the Delayed set. This should not affect the timing consistency of Proc: it should be
able to execute special timing events consistently. In any case, Assertion 7.11 still
checks that the execution of delayable events adheres to timing consistency, whereby
an infinite number of delayable events cannot be executed in a finite amount of time.
If Assertion 7.11 was modified to use the failures model, then it would only check for
the absence of time-stops.

Finally, the conditions of Assertion 7.11 could be relaxed to split the normal
events into two sets: delayable events (Delayed) which do not adhere to the timing
consistency checks of Assertions 7.9 to 7.11 and urgent events (Σ8(Delayed∪{tock}))
which do. At this level, Delayed events could potentially be delayed forever, but
also an infinite number of Delayed events could potentially be executed in a finite
amount of time. For this reason, Delayed events should adhere to higher level timing
consistency checks and are exempt from the timing consistency checks at this level
(i.e. in Assertion 7.12). Assertion 7.12 verifies that the passage of time should not
rely on the execution of any Delayed event or the lack of such an execution, hence
Assertion 7.12 checks for the timing consistency of urgent events, while excluding
Delayed events from such a check.

Assertions 7.10 to 7.12 represent checks that are similar to the bottom law for
refinement (RUN vT P), which is described by Schneider [39], except that they
address timing properties rather than the progression of asynchronous events.
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7.3 Basic Functional and Timing Verification

First, basic properties about key functional units, as well as the abstract specifications
of protocols were checked. These include basic liveness and safety properties. The
deadlock freedom liveness property was checked using the Stable Failures Model (F)
for all the functional units, as well as a selected construction of the top-level system.

ISA deadlock-free[[F ]] (7.13)

REG deadlock-free[[F ]] (7.14)

STC deadlock-free[[F ]] (7.15)

SBC deadlock-free[[F ]] (7.16)

DDC deadlock-free[[F ]] (7.17)

SYSTEMone-bit deadlock-free[[F ]] (7.18)

Assertions 7.13 to 7.18 check for strong deadlock freedom of the associated pro-
cesses, which means the processes are not even allowed to successfully terminate.

With respect to basic safety checks, the timing consistency check described in
Assertion 7.10 serves as a minimum timing check for essential timed processes. Let all
events except tock be treated as urgent (Σ8{tock}), then Assertions 7.19 to 7.23 verify
the basic timing correctness of the functional units, as well as a one bit construction
of the communication system.

TOCKS vFD (ISA ‖
aREG

REG) \ Σ8{tock} (7.19)

TOCKS vFD STC \ Σ8{tock} (7.20)

TOCKS vFD DDC \ Σ8{tock} (7.21)

TOCKS vFD SBC \ Σ8{tock} (7.22)

TOCKS vFD SYSTEMone-bit \ Σ8{tock} (7.23)

7.4 ISA-Oriented Specification Verification

Basic verification of the ISA-Oriented Specifications involved performing the following
timing and deadlock assertions:
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UARTISA-RX deadlock-free[[F ]] (7.24)

UARTISA-TX deadlock-free[[F ]] (7.25)

UARTISA-BUF-RX deadlock-free[[F ]] (7.26)

UARTISA-BUF-TX deadlock-free[[F ]] (7.27)

SPIISA-MASTER deadlock-free[[F ]] (7.28)

SPIISA-SLAVE deadlock-free[[F ]] (7.29)

TOCKS vFD UARTISA-RX \ Σ8{tock} (7.30)

TOCKS vFD UARTISA-TX \ Σ8{tock} (7.31)

TOCKS vFD UARTISA-BUF-RX \ Σ8{tock} (7.32)

TOCKS vFD UARTISA-BUF-TX \ Σ8{tock} (7.33)

TOCKS vFD SPIISA-MASTER \ Σ8{tock} (7.34)

TOCKS vFD SPIISA-SLAVE \ Σ8{tock} (7.35)

All the above assertions are valid, except the ones relating to a UART receiver
(Assertions 7.24, 7.26, 7.30, and 7.32) because a stand-alone receiver specification
would halt if not connected with a transmitter, due to the possible error in the
reception of the stop-bit. See the relevant ISA Specification in Section 6.4.1 for more
details.

In addition, ISA-Oriented Specification verification involved checking the willing-
ness of the unconfigured communication system to execute such a specification as
follows:

SYSTEMone-bit vFD UARTISA-RX (7.36)

SYSTEMone-bit vFD UARTISA-TX (7.37)

SYSTEMone-bit vFD UARTISA-BUF-RX (7.38)

SYSTEMone-bit vFD UARTISA-BUF-TX (7.39)

SYSTEMthree-bit vFD SPIISA-MASTER (7.40)

SYSTEMthree-bit vFD SPIISA-SLAVE (7.41)

where:
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SYSTEMthree-bit = (((ISA ‖
aReg

REG) ‖
aSbc

SBC0) ‖
aStc

STC0) ‖
aDdc

DDC3-bit (7.42)

Assertions 7.36 to 7.41 check the consistency of the ISA-Oriented Specification of a
protocol with the relevant unconfigured communication system construction. These
assertions still do not give any assurance of the functional correctness of the con-
structed system, nor of the correctness of the associated ISA-Oriented Specification.
However, they merely check that all the ISA-Oriented Specifications of the protocols
are consistent with the Instruction Set defined in Section 5.3.5.2.

If modelling rules were enforced so that all ISA-Oriented Specifications were writ-
ten strictly using the Instruction Set defined in Section 5.3.5.2 then Assertions 7.36
to 7.41 would be satisfied using compositional semantics rules. This is true since the
stable failures of the ISA process in Eqn. 5.136 are the union of the stable failures of
all individual instruction sets. Assuming that an instruction (I ) is an atomic unit,
whose sequence of events is represented by the atomic event i (I = i→ SKIP), then
the stable failures of an individual instruction (I ) include the set of all atomic in-
structions except I. From the compositional semantics of the internal choice operator
used to model the top-level ISA process, one could infer that the stable failures of
the top-level ISA process is the union of the refusal sets of all individual instructions:
i.e. ISA cannot refuse to execute any instruction in the instruction set. Hence, if
an ISA-Oriented Specification of a protocol was strictly a sequence of the individual
instruction sets, then the refusal set of an ISA-Oriented Specification at any point in
time includes the set of all instructions, except the next instruction in the sequence.
This refusal set is a subset of the refusal set of the top-level ISA process mentioned
earlier. Hence, using theses rules, Assertions 7.36 to 7.41 would be satisfied using
these compositional semantics rules of the stable failures model and typically there
would not be a need for FDR to verify them.

Practically, Assertions 7.36 to 7.41 are used to enforce the modelling rule that
all ISA-Oriented Specifications are indeed written strictly using the Instruction Set
defined in Section 5.3.5.2.

7.5 Abstract Specification Verification

Deadlock checking and timing consistency checks were also performed on the abstract
specifications of the communication protocols:
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UARTSPEC-RX deadlock-free[[F ]] (7.43)

UARTSPEC-TX deadlock-free[[F ]] (7.44)

SPISPEC-MASTER deadlock-free[[F ]] (7.45)

SPISPEC-SLAVE deadlock-free[[F ]] (7.46)

The specification of UARTSPEC-RX enforces the input stop-bit value to be high,
which is different from the respective ISA-Oriented Specification. For this reason
Assertion 7.43 is valid, unlike Assertion 7.24. This is an interesting difference in
specification styles because both are valid specifications and should be interoperable,
as will be verified in Section 7.9.

TOCKS vFD UARTSPEC-RX \ Σ8{tock} (7.47)

TOCKS vFD UARTSPEC-TX \ Σ8{tock} (7.48)

TOCKS vFD SPISPEC-MASTER \ Σ8{tock} (7.49)

TOCKS vFD SPISPEC-SLAVE \ Σ8{tock} (7.50)

Assertions 7.47 to 7.50 verify the basic timing consistency check on all abstract
specifications. All assertions are valid, except Assertion 7.50 because the process
SPISPEC-SLAVE is an asynchronous process and does not execute the tock timing event.

7.6 ISA System-level Functional Verification

Roscoe [38, Section 4.3] describes functional verification checks of communication
protocols. Roscoe proves the functional correctness of a communication protocol
by verifying the equivalence of a complex communication channel constructed by
connecting a sender and a receiver of such a protocol to a multi-entry buffer.

The refinement models described earlier verify the refinement relation between
processes and not their equivalence. An equivalence relation is established using two-
way refinement. This approach to equivalence model-checking has potential complex-
ity implications when performed in FDR: each process would have to be compiled,
explicated and traversed twice. Despite this complexity complication, for the purpose
of establishing system-level correctness of the specifications, two-way refinements were
used to establish equivalence relations throughout this chapter. Through the use of
TCL scripting, it is possible for equivalence checks to be optimised by constructing
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two hypotheses using the same compiled processes. For demonstration purposes, a
two-way refinement symbol is used in this section:

P v Q ∧ Q v P ⇔ P ≡ Q (7.51)

This implied equivalence was used to establish the functional correctness of all
protocol specifications. In this section and the next one, channel construction uses a
transmitter and a receiver of the same protocol at the same abstraction level. This is
performed for both the ISA-Oriented Specifications discussed in Section 6.4, as well
as the abstract specifications of the protocols discussed in Section 6.5. By doing so,
the functional correctness of the specifications for all transmitters and receivers is
established and data integrity is maintained through all communicating processes.

As discussed in Section 6.5, to establish a global notion of time between different
processes interacting in a real-time transaction, a real-time event must appear in their
synchronisation alphabet. Hence, in the construction of a complex UART channel, the
tock event is used to synchronise the transmitter and receiver. On the other hand,
and because the SPI protocol is a synchronous protocol that explicitly exchanges a
clock signal, the SPI clock signal is used to establish a global notion of time instead of
explicit synchronisation using tock. This is justified by the fact that the SPISPEC-SLAVE

has been modelled as a completely asynchronous process, which does not execute tock
events. All ISA-Oriented Specifications have to synchronise on tock events, because
all ISA-Oriented system constructions are synchronous and execute the tock event.

First, an abstract simple buffer and its alphabets are defined as follows:

aBuffer = {|produce, consume|} (7.52)

Buffer = produce?data→ consume!data→ Buffer (7.53)

Then two UART communication channels are constructed, one for the unbuffered
specification and one for the buffered one:

UARTISA-TX ′ = UARTISA-TX [[dRO0/pUART ]] (7.54)

UARTISA-RX ′ = UARTISA-RX [[dRI0/pUART ]] (7.55)

UARTISA-CHAN ′ = UARTISA-TX ′ ‖
{|pUART,tock|}

UARTISA-RX ′ (7.56)

UARTISA-CHAN = UARTISA-CHAN ′ \ Σ8 aBuffer (7.57)
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UARTISA-BUF-TX ′ = UARTISA-BUF-TX [[dRO0/pUART ]] (7.58)

UARTISA-BUF-RX ′ = UARTISA-BUF-RX [[dRI0/pUART ]] (7.59)

UARTISA-BUF-CHAN ′ = UARTISA-BUF-TX ′ ‖
{|pUART,tock|}

UARTISA-BUF-RX ′ (7.60)

UARTISA-BUF-CHAN = UARTISA-BUF-CHAN ′ \ Σ8 aBuffer (7.61)

Similarly, the ISA-based complex communication channel for the SPI protocol is
constructed as follows:

aSPIchan = {|pClk, pMiso, pMosi, tock|} (7.62)

SPIISA-MASTER ′ = SPIISA-MASTER [[dRO0, dRI1, dRO2/pClk, pMiso, pMosi]] (7.63)

SPIISA-SLAVE ′ = SPIISA-SLAVE [[dRI0, dRO1, dRI2/pClk, pMiso, pMosi]] (7.64)

SPIISA-CHAN ′ = SPIISA-MASTER ′ ‖
aSPIchan

SPIISA-SLAVE ′ (7.65)

SPIISA-CHAN = SPIISA-CHAN ′ \ Σ8 aBuffer (7.66)

Then, using the failures/divergences refinement model, the complex channels are
proven to be functionally equivalent to a single-entry buffer:

UARTISA-CHAN ≡FD Buffer (7.67)

UARTISA-BUF-CHAN ≡FD Buffer (7.68)

SPIISA-CHAN ≡FD Buffer (7.69)

Figures 7.1a and 7.1b show block diagrams of the ISA-Oriented channels con-
structed by Eqn. 7.66 and Eqn. 7.57 respectively, as well as their equivalence to a
buffer verified by Assertions 7.69 and 7.67.

7.7 Abstract System-level Functional Verification

A simple abstraction of the physical layer is specified to act as a signal register or
physical wire. This is an asynchronous process: it does not execute tock events or
synchronise on them. Its main function is to register the physical value of the interface
set by a transmitter and make this value available to a receiver at any time. This
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Figure 7.1 ISA Functional Verification
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Figure 7.2 UART Specification Functional Verification

is equivalent to an abstract asynchronous 1 bit register. Its function is implicitly
provided by the DDC functional unit described in Chapter 5.

Phy =Phy′(1) (7.70)

Phy′(d) = in?x→ Phy′(x) (7.71)

2 out!d→ Phy′(d) (7.72)

The default value of any physical connection at system initialisation is assumed
to be 1 (d = 1 in Eqn. 7.71).

Complex communication channels were constructed using the abstract specifi-
cation of the protocols. For example, a UART specification channel composed of
the UARTSPEC-RX and UARTSPEC-TX called UARTSPEC-CHAN is demonstrated in Fig-
ure 7.2. Similarly, an SPI specification channel composed of the SPISPEC-MASTER and
SPISPEC-SLAVE called SPISPEC-CHAN is demonstrated in Figure 7.3. Those complex spec-
ification channels are constructed in Eqns. 7.74 and 7.77, respectively.
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UARTSPEC-RX ′ = UARTSPEC-RX ‖
{|UARTIn |}

Phy[[in, out/UARTIn,UARTMid]] (7.73)

UARTSPEC-CHAN = (7.74)

UARTSPEC-RX ′ ‖
{|UARTMid,tock|}

UARTSPEC-TX [[UARTOut/UARTMid]] (7.75)

SPISPEC-MASTER ′ = SPISPEC-MASTER ‖
{|sSMosi|}

Phy[[in, out/sSMosi,midMosi]] (7.76)

SPISPEC-CHAN = (7.77)

SPISPEC-MASTER ′ ‖
{|sSClk,midMosi|}

SPISPEC-SLAVE [[sSMosi/midMosi]] (7.78)

Finally, establishing the equivalence of the complex channels in Eqn. 7.74 and
Eqn. 7.77 to a buffer verifies the functional correctness of the associated abstract
specifications. This was not a simple task as the following discussion demonstrates.

Functional correctness of a specification channel was established using two sep-
arate and distinct assertions, unlike the functional verification checks of the ISA-
Oriented Specifications, which used two similar refinement checks of the form:
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ProtocolCHAN v Buffer ∧ Buffer v ProtocolCHAN (7.79)

First, the following two assertions using the unclocked buffer were verified to be
true:

UARTSPEC-CHAN \ Σ8 aBuffer vFD Buffer (7.80)

SPISPEC-CHAN \ Σ8 aBuffer vFD Buffer (7.81)

Assertions 7.81 and 7.80 verify that the complex specification channels can at least
act as a single-entry buffer. However, because the Tau Priority Model is not used,
there could be instances where the complex channels miss their real-time deadlines,
so it is quite likely they could corrupt the data being buffered, as demonstrated by
Assertion 7.82.

SPISPEC-CHAN \ Σ8 aBuffer vFD produce?0→ consume!1→ SKIP (7.82)

Assertion 7.82 is true and hence verifying the specification channels using the
failures/divergences refinement model is not sufficient.

In all abstract specifications, tock-CSP was used in a simplistic manner, as dis-
cussed in Section 6.5, where only the SpecTimer process was responsible for managing
the real-time. For this reason, real-time communication events between SpecTimer
and other specification processes (i.e. events trigger, set, reset) would need to have
higher priority over tock events, if they are to be executed at the right time. For this
reason, the Tau Priority Model was the model of choice for functional verification
of the abstract specifications. However, under the Tau Priority Model only internal
events can have higher priority over external events. If the tock event could not be
hidden in a refinement check to maintain its lower priority, and in the lack of any per-
formance specifications, then the abstract Buffer process could be allowed to execute
an arbitrary number of tock events between an input and output:

Buffer ′ = Buffer ||| TOCKS (7.83)

However, if the complex specification channels hide all events except tock, produce
and consume, then they become clocked complex channels. These constructions could
be verified using the Tau Priority Model as follows:
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UARTSPEC-CHAN ′ = UARTSPEC-CHAN \ Σ8({tock} ∪ aBuffer) (7.84)

SPISPEC-CHAN ′ = SPISPEC-CHAN \ Σ8({tock} ∪ aBuffer) (7.85)

Buffer ′ vT UARTSPEC-CHAN ′[[tau-priority-over]]{tock} (7.86)

Buffer ′ vT SPISPEC-CHAN ′[[tau-priority-over]]{tock} (7.87)

Assertions 7.87 and 7.86 verify that the clocked complex channels in Eqns. 7.85
and 7.84 preserve the integrity of all the communicated data items, because they both
refine a clocked single-entry buffer.

Assertions 7.87 and 7.86 lack any performance verification, which means they
allow both processes on either side of the refinement check to execute an arbitrary
number of clock cycles for each transmitted data item. Performance verification is
discussed in Section 7.8.

Finally, Assertions 7.87 and 7.86 have striking similarities with the timing consis-
tency check in Assertion 7.12, which takes into account delayable events (produce and
consume in this case) that are never required to enable tock. This is quite the case for
the produce event, but not precisely so for the consume event. In the clocked complex
channels of Eqns. 7.85 and 7.84 consume has some sense of urgency. It is allowed to
be delayed within a specific time interval. This interval is equivalent to 1 bit-time for
process UARTSPEC-RX in Eqn. 6.108. At the end of that interval, the consume event
becomes urgent, because the receiver must be able to start the reception of the next
data word.

7.8 System-level Performance Verification

Performance specifications are an important aspect of real-time communication pro-
tocols and systems. Those specifications were modelled earlier in Chapter 5 for the
whole communication system. Then, Section 6.4 used the ISA-Oriented Specification
technique to specify both the functional and performance specifications of selected
protocols. Also, Section 6.5 provided independent functional and performance spec-
ifications for the selected protocols. All real-time specifications were modelled using
tock-CSP.
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The high-level performance specifications of communication protocols could in-
clude the latency of communications and the maximum possible throughput an imple-
mentation can achieve. A more elaborate performance specification for an ISA-based
communication system could also include lower-level performance specifications, such
as instruction delays and the latencies associated with different I/O instructions.

This section addresses the verification of high-level performance aspects of the
modelled protocols. Those performance aspects could be specified using standard
tock-CSP or alternatively they could also be specified using the ISA-Oriented Speci-
fication, as demonstrated below.

Using the definition of the TOCK process in Section 5.3.1, a timed buffer could
be defined:

SR = sw0w?data→ sw0r!data→ SR (7.88)

aSR = {|sw0w, sw0r|} (7.89)

BufferT imed ′(n) = produce?data→ sw0w!data→ TOCK(n); (7.90)

sw0r?data→ consume!data→ BufferT imed ′(n) (7.91)

2 tock → BufferT imed ′(n) (7.92)

BufferT imed(n) = (BufferT imed ′(n) ‖
aSR

SR) \ aSR (7.93)

BufferT imed in Eqn. 7.93 buffers a data item received on the produce channel for
an exact amount of clock cycles (n) before it makes it available for output on the
consume channel. This is useful for measuring and verifying latency specifications for
the communication protocols, using the complex communication channels that were
constructed in Sections 7.6 and 7.7.

7.8.1 Latency Verification

First, the expected latency between input and output of a complex communication
channel is defined in terms of the number of clocks per bit (UARTClkPerBit = uCPB

and SPIClkPerBit = sCPB) and the number of bits in a data word (DataSize):

UARTClkWord = (2 +DataSize)× UARTClkPerBit +x (7.94)

UARTBufClkWord = (2 +DataSize)× UARTClkPerBit +y (7.95)

SPIClkWord =DataSize× SPIClkPerBit− SPIClkPerBit /2 + z (7.96)
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Notice that one start-bit and one stop-bit were used for the UART specification and
hence 2 is added to the DataSize in Eqns. 7.94 and 7.95. Also, the specification of
the SPI protocol allows for the received data word to be transmitted on the consume
channel once the rising edge of the external clock signal associated with the last data
bit has been observed. For this reason, the value SPIClkPerBit /2 is subtracted from
the expected latency of the data word. Finally, the constants x, y, z are used to
adjust for small delays incurred due to latencies between the transmitter and receiver
and also for allowing a delay overhead associated with few instructions in the ISA

specifications.
Using the above definitions, the latencies of the complex communication channels

could be verified as follows:

BufferT imed(UARTClkWord) vT UARTISA-CHAN ′ \ Σ8(aBuffer∪{tock}) (7.97)

BufferT imed(UARTBufClkWord) vT UARTISA-BUF-CHAN ′ \ Σ8(aBuffer∪{tock}) (7.98)

BufferT imed(SPIClkWord) vT SPIISA-CHAN ′ \ Σ8(aBuffer∪{tock}) (7.99)

In Assertions 7.97, 7.98 and 7.99, an abstraction of the complex channel is obtained
where all events are hidden, apart from the buffer channels, as well as clocking events
(tock). The assertions verify that all complex channels constructed using the ISA-
Oriented Specifications of the protocols meet the specified latency requirements.

It was also found that the lowest uCPB for the unbuffered UART specification
was 4. Using the SBC unit, a uCPB as low as 2 was fully functional. Hence, the
SBC could potentially double the maximum achievable bit-rate by halving the lowest
possible latency.

Verifying the performance of SPI, as specified by assertion 7.99 was tricky. Func-
tional verification of SPI using sCPB = 2 and TimeSize = 2 was possible. However,
through the examination of the ISA-Oriented Specifications in Section 6.4.2 it was
clear that Master devices need to execute about 10 instructions each bus cycle. This
information eliminates the need for performance analysis of SPI for sCPB < 10.
Analysis of the performance for sCPB ≥ 10 is best demonstrated using the Tock-
CSP Waveform Generator, which is discussed in the following section.

7.8.1.1 Tock-CSP Waveform Generator

Waveform visualisation is an essential part of hardware design development cycles. It
can be used for providing real-time specifications and also for analysing faults in the
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design through a timeline view of changes to the selected signals. For this reason, the
addition of a waveform generator to the model-checker for added visualisation of tock-
CSP traces would help bridge the gap between formal specification and verification
approaches and the hardware implementation and verification tools. Hence, a trace
analyser and Verilog Value Change Dump (VCD) generator have been integrated into
the FDRlei plug-in. The full documentation of FDRlei can be found in Appendix B.
In this section, a brief discussion of the VCD generation process is presented along
with a demonstration of its use.

At least two processes are provided to FDRlei. Optionally, the refinement model,
witness number, analysed process name and VCD file name can also be provided.
FDRlei then uses the TCL interface to an FDR server to construct and execute a
refinement check, which is assumed to fail, in which case the failing traces could be
identified and analysed. A top-level process trace information could be interpreted
as a tree of failed traces: one for each subprocess involved in the construction of that
top-level process. Hence, an optional third process could be used to identify the node
in the trace tree for analysis. FDRlei then constructs the trace tree interactively with
the FDR server and searches through this trace tree to identify the required trace.

Once a failing trace has been identified, the following assumptions are made in
order to interpret the trace in real-time and convert it into the VCD file format.

• All events (even complex ones) are interpreted as typeless events, unless the
value appearing after the last dot operator is a numeric value. For example,
input.10.Data is interpreted as a simple event, while input.Data.10 is inter-
preted as a complex event with value 10.

• All simple events are interpreted as “wires” in Verilog. Once a simple event oc-
curs in a tock-CSP cycle, the wire value is changed to 1 for half of the respective
cycle.

• A complex CSP event is represented in Verilog as a number of wires (or bus).
The occurrence of a complex event at any cycle changes the bus value at the
start of the cycle (i.e. just after the rising edge of the clock). It does not change
until the complex event appears again in the CSP trace.

An ambiguity might occur between a typeless event and a complex event which
is 1 bit wide. For this reason, a typeless event is only activated in the VCD trace
for half the tock-CSP cycle, and goes back to zero in the second half allowing for its
occurrence in the next cycle to be clearly identifiable in the waveform. A complex
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event which is of width 1 changes its value at the start of the cycle (just like any
other complex event) and does not change again unless it appears again in the CSP
trace.

Once FDRlei has finished interpreting the CSP trace, a VCD file is generated. A
waveform viewer, such as GTKWave [84] can then be used to view and analyse the
generated waveform. FDRlei will attempt to instantiate GTKWave, providing it with
the name of the generated VCD file.

Finkelstein et al. [84] present a user guide to GTKWave. Most importantly, Finkel-
stein et al. present a TCL interface to GTKWave which inspired automated interac-
tion with GTKWave by FDRlei, similar to its interaction with the FDR server. This
enabled an interactive mode in which FDRlei is able to change the trace view point
in the debug tree at run time.

Figure 7.4 demonstrates the use of the waveform generator in analysing a failing
trace of Assertion 7.30. The figure shows the sequence of instructions leading to the
failing instruction (the TEST instruction identifying the stop-bit).

Only a selected subset of the Verilog standard [85] has been addressed by the
waveform generator for use in this framework. Future work would include addressing
more complex aspects of the standard. In particular, the notion of scopes could be
used to enable the interpretation of the full debug tree of a top-level process, rather
than only one subprocess at a time.

Not only can the waveform generator be useful for analysing failing traces, it could
also be used to produce specification waveforms of the expected behaviour of a CSP
specification. Those specification waveforms can guide the implementation process of
such a specification into physical hardware.

7.8.1.2 Waveform Analysis of Latency Verification

As mentioned earlier, an SPI bus cycle takes about 10 instructions. Assuming each
arithmetic instruction takes exactly 1 cycle and that all I/O instructions commit
immediately and hence also take exactly 1 cycle, then theoretically the maximum
possible performance is achieved when sCPB = 10, which requires a TimeSize ≥ 4.
Using these assumptions in the latency verification of the SPI complex channel using
Assertion 7.99, it is evident that setting sCPB = 10 does not meet the specified
latency requirement. Figure 7.5 shows the performance of the SPIISA-MASTER analysed
using the waveform generator.

Because sCPB = 10, the specification aims to generate a duty cycle of 50% for
the bus clock (mid-clk in Figure 7.5). The figure shows that the falling edge of the
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Figure 7.4 Waveform of a failing trace for Assertion 7.30
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Figure 7.5 Waveform of Assertion 7.99 using sCPB = 10
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first bit has a timestamp of 4 (iT ime = 4). Then the rising edge was initiated using
a timed output instruction (TMDOUT) at the 9th clock cycle (TMDO .9). However,
this TMDOUT instruction was posted at the 10th clock cycle which meant it missed
its deadline and had to wait for the time register in the STC unit to wrap. This takes
16 cycles and the falling edge of the bus clock takes place at the 25th cycle stretching
the bus clock by 16 system cycles.

Using sCPB ≥ 12, the latency verification of SPI succeeds. Figure 7.6 shows the
latency waveform for process SPIISA-MASTER using sCPB = 12. It is evident from the
waveform that the bus clock is now regular and the stretching that occurred when
using sCPB = 10 no longer takes place, achieving the optimum bus clock of exactly
12 system clock cycles per 1 SPI bus cycle.

Finally, performance specifications could also be defined using ISA-Oriented Speci-
fications. For example, the latencies expected could be defined in terms of the number
of NOP instructions that could be executed between the start of a transmission of a
data word until it is received and forwarded by the receiver:

UART-ISA-latency = GET(produce, wReg0); (7.100)

NOPS((UARTClkWord−IDelay)/IDelay); (7.101)

PUT(consume,wReg0); (7.102)

UART-ISA-latency (7.103)

2 NOP ;UART-ISA-latency (7.104)

Hence, Assertion 7.97 demonstrated earlier could also be written as:

UART-ISA-latency \ Σ8(aBuffer∪{tock}) vT (7.105)

UARTISA-CHAN ′ \ Σ8(aBuffer∪{tock}) (7.106)

Similarly, ISA-based latency specifications and assertions could be defined for
UARTISA-BUF-CHAN and SPIISA-CHAN.

7.8.2 Throughput Verification

Another measure of the performance of a communication channel is the maximum
possible throughput of such a channel. This is useful when events are allowed to
happen within a well-defined time window, but the exact cycle at which events occur
is unknown. For example, the exact clock cycle for forwarding the data word to
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the consume channel in the abstract specification of Section 6.5 is not fixed. Hence,
verifying the latency of the complex channels of the abstract specifications could be
tricky. However, measuring the total number of clock cycles between two consecutive
transmissions would provide good evidence on the performance of such a complex
channel. This delay shall be called the throughput delay and measuring it between
two successive transmissions helps determine the practical bit-rate or throughput of
the channel, as opposed to the nominal bit-rate defined in Eqns. 6.1 or 6.4.

This delay could be verified using the following abstraction:

ProduceDelay(n) = produce?data→ TOCK(n) ; ProduceDelay(n) (7.107)

2 tock → ProduceDelay(n) (7.108)

Because there is no overhead between two consecutive data transmissions in the
UART specification, it turns out that the practical bit-rate is equivalent to the nominal
bit-rate:

UARTThroughputDelay =uTD = UARTClkWord (7.109)

UARTBufThroughputDelay =uBTD = UARTBufClkWord (7.110)

However, because the SPI protocol specification allows for an empty bus cycle
between two consecutive data words, the throughput delay for SPI is:

SPIThroughputDelay = SPITD = (DataSize+ 1)× sCPB (7.111)

The following assertions verified the throughput of the specification channels:

ProduceDelay(uTD) vT UARTSPEC-CHAN \ Σ8({|produce|} ∪ {tock}) (7.112)

ProduceDelay(SPITD) vT SPISPEC-CHAN \ Σ8({|produce|} ∪ {tock}) (7.113)

Because ProduceDelay(n) forces at least n clock cycles between two consecutive
produce events, but allows for an additional arbitrary number of clock cycles after n
and before the next produce event, it follows that if assertion 7.112 is true, then so
is:

ProduceDelay(uTD −D) vT UARTSPEC-CHAN \ Σ8({|produce|} ∪ {tock}) (7.114)
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For all uTD ≥ D ≥ 0 but not for D < 0.
While the latency checks in Section 7.8.1 implicitly verify functional correctness

too, the throughput checks discussed in this section do not. Hence, it is important
that the functional correctness of the complex channels is always verified, as discussed
in Sections 7.6 and 7.7.

Similar checks were performed to verify the throughput of the ISA-Oriented Spec-
ifications :

ProduceDelay(uTD + 1) vT UARTISA-CHAN ′ \ Σ8({|produce|} ∪ {tock}) (7.115)

ProduceDelay(uBTD + 2) vT UARTISA-BUF-CHAN ′ \ Σ8({|produce|} ∪ {tock}) (7.116)

ProduceDelay(SPITD +2) vT SPIISA-CHAN ′ \ Σ8({|produce|} ∪ {tock}) (7.117)

Assertions 7.115 to 7.117 show a slight different (1 or 2) clock cycles overhead be-
tween the throughput performance of the ISA-Oriented Specification and the abstract
one for the same protocol.

It can be a little tedious to search for the boundary values of performance spec-
ifications, especially in cases where those performance requirements could not be
mathematically estimated, as previously demonstrated. In such a case, a construc-
tion could be made to extract these performance metrics automatically using FDR
(see Section 14.6 of Roscoe [38] for more details).

7.9 Protocol Conformance Verification

The final set of checks was performed to establish that the ISA-Oriented Specification
of a protocol conforms to the abstract specification of the same protocol. Confor-
mance verification of communication protocols has evolved as a dedicated field of
research through an ISO standard [86], which was subsequently formalised into a
conformance testing framework by Tretmans et al. [87]. In addition, Krichen and
Tripakis [88] further developed conformance testing for real-time systems based on
timed automata [89]. In this section, a more ad-hoc approach to conformance ver-
ification is taken where conformance is checked through the construction of a set
of complex channels. One end of the complex channel is a transmitter specified in
one abstraction and the other end is a receiver of the same protocol specified using
another abstraction.

Two UART conformance channels were constructed as follows:
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UARTCONF-CHAN-1 ′′ = (7.118)

UARTISA-TX [[dRO0/UARTOut]] ‖
{|UARTOut |}

Phy[[in, out/UARTOut,UARTIn]] (7.119)

UARTCONF-CHAN-1 ′ = UARTCONF-CHAN-1 ′′ ‖
{|tock,UARTIn |}

UARTSPEC-RX (7.120)

UARTCONF-CHAN-1 = UARTCONF-CHAN-1 ′ \ Σ8(aBuffer∪{tock}) (7.121)

UARTCONF-CHAN-2 ′′ = UARTSPEC-TX ‖
{|UARTOut |}

Phy[[in, out/UARTOut,UARTIn]] (7.122)

UARTCONF-CHAN-1 ′ = (7.123)

UARTCONF-CHAN-2 ′′ ‖
{|tock,UARTIn |}

UARTISA-RX [[dRI0/UARTIn]] (7.124)

UARTCONF-CHAN-2 = UARTCONF-CHAN-2 ′ \ Σ8(aBuffer∪{tock}) (7.125)

Notice the use of the Phy process described in Section 7.7 to decouple a receiver
process from a transmitter process. The UART conformance channels were verified
through a series of refinement checks to establish their correctness. At the time of
writing, basic deadlock and timing consistency checks as well as system-level func-
tional checks were carried out, similar to the those in Sections 7.6 and 7.7 in which
the Tau Priority Model was used.

Similar SPI conformance channels were constructed:

SPISPEC-MASTER ′′ = SPISPEC-MASTER [[sSMosi, sSClk/iMosi, iClk]] (7.126)

SPIISA-SLAVE ′′ = SPIISA-SLAVE [[dRI0, dRI2/iClk, iMosi]] (7.127)

SPICONF-CHAN-1 ′ = SPISPEC-MASTER ′′ ‖
{|iMost,iClk,tock|}

SPIISA-SLAVE ′′ (7.128)

SPICONF-CHAN-1 = SPICONF-CHAN-1 ′ \ Σ8(aBuffer∪{tock}) (7.129)

SPISPEC-SLAVE ′′ = SPISPEC-SLAVE [[sSMosi, sSClk/midMosi, iClk]] (7.130)

SPICONF-CHAN-2 ′′ = SPISPEC-SLAVE ′′ ‖
{|midMosi|}

Phy[[in, out/iMosi,midMosi]] (7.131)

SPIISA-MASTER ′′ = SPIISA-MASTER [[dRO0, dRO2/iClk, iMosi]] (7.132)

SPICONF-CHAN-2 ′ = SPICONF-CHAN-2 ′′ ‖
{|iMost,iClk|}

SPIISA-MASTER ′′ (7.133)

SPICONF-CHAN-2 = SPICONF-CHAN-2 ′ \ Σ8(aBuffer∪{tock}) (7.134)
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It was possible to establish the functional correctness of SPICONF-CHAN-2 without
using the Tau Priority Model because the construction did not involve the use of the
SpecTimer process on the contrary to the functional verification of SPICONF-CHAN-1.

The DDC units in the SPIISA-SLAVE process act as a Phy buffering physical interface
changes and decoupling the ISA process from such changes, hence no Phy process was
required in the construction of SPICONF-CHAN-1 in Eqn. 7.129. On the contrary, the
construction of SPICONF-CHAN-2 in Eqn. 7.134 required a Phy process, because physi-
cal interface changes triggered by the SPIISA-MASTER process needed to be decoupled
from the SPISPEC-SLAVE process, which is modelled simplistically and hence does not
integrate the Phy mechanism that exists in the ISA system.

Finally, as already demonstrated, many different specifications (ISA or abstract)
are considered equivalent if the selected functional or performance properties are
found to be equivalent using the selected equivalence algorithm. For example, Asser-
tions 7.67 and 7.68 verified the functional equivalence of two different ISA-Oriented
Specifications of the UART protocol. They were both found to be functionally equiv-
alent to a single-entry buffer. This meant that a conformance channel construction,
which uses two different ISA-Oriented Specifications of the UART protocol is possible:
one that makes use of an SBC unit, and another that does not. Using the respective
specifications defined in Section 6.4.1 and their interfaces defined in Section 7.6, the
following two conformance channels were constructed:

UARTCONF-CHAN-3 ′ = UARTISA-RX ′ ‖
{|tock,pUART |}

UARTISA-BUF-TX ′ (7.135)

UARTCONF-CHAN-3 = UARTCONF-CHAN-3 ′ \ Σ8(aBuffer∪{tock}) (7.136)

UARTCONF-CHAN-4 ′ = UARTISA-BUF-RX ′ ‖
{|tock,pUART |}

UARTISA-TX ′ (7.137)

UARTCONF-CHAN-4 = UARTCONF-CHAN-4 ′ \ Σ8(aBuffer∪{tock}) (7.138)

UARTCONF-CHAN-3 and UARTCONF-CHAN-4 were verified for deadlock freedom, timing
consistency and functional correctness through establishing their equivalence to a
buffer.

7.10 Results and Summary

The model-checking approach demonstrated in this chapter verifies essential func-
tional and timing properties of the developed configurable system in Sections 7.3
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to 7.5. In addition, the power of the modelled configurable system along with its
ISA interface is demonstrated through the system-level functional and performance
verification in Sections 7.6 and 7.8. The two independent specification techniques
demonstrated in Chapter 6 are used in an interoperable manner to construct complex
communication channels in Section 7.9. The model-checking of those complex chan-
nels against predefined functional and performance specifications gives further proof
of the equivalence between the two independent specification styles. This is essential
for verifying the validity of the configurable system and the ability of its ISA interface
for specifying and verifying communication protocols.

The evaluation in this chapter was performed using similar hardware/software
configurations to the ones used for the metrics extraction in Chapter 5: FDR 2.91
Academic Release with the added optimisations described in Section 4.5, Linux kernel
version 2.6.32, and a PC with 8 Cores each of which is a 3.16 GHz Intel Xeon processor.
All processors share 40 GB of main memory.

The total number of assertions used through the evaluation process was 122.
Throughout the functional evaluation of the system, the following configuration was
sufficient:

TimeSize = 3 (7.139)

DataSize = 2 (7.140)

However, the performance evaluation of the SPI protocol required at least the
following configuration:

TimeSize = 4 (7.141)

DataSize = 2 (7.142)

SPIClkPerBit = 12 (7.143)

Attempts to run all assertions sequentially in a single instance of FDR with
TimeSize = 4, DataSize = 2 and a system with 3 DDC units proved unsuccess-
ful. Memory profiling showed that FDR was not designed for verifying systems with
such a large number of assertions. This is evident in the ever-increasing memory used
by FDR. By attempting to verify all 122 assertions in one run, FDR exhausted all
the available 40 GB of memory before it was terminated by the host kernel. It was
noticed that FDR was not releasing the used memory after finishing the verification
of an assertion before starting the next one.
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It was also noticed that performing all the checks using a single SYSTEM con-
struction that guarantees all assertions to be true was not possible. This would entail
running all checks on processes similar to SYSTEMthree-bit using the maximum re-
quirement for all parameters (i.e. TimeSize = 4). By doing so, results for a set of
8 system-level assertions could never be obtained. The expected cause for this is
the fact that current implementation of FDR always explicates the left process in a
refinement check. An experiment for verifying Assertion 7.40 from Section 7.4 using
TimeSize = 4 and DataSize = 2 ran for over 14 hours, consumed 34.83 GB of main
memory and explicated 522.8 million states before the kernel ran out of memory and
FDR was terminated gracefully.

Hence, for the purpose of memory optimisation, the large number of assertions
were split into 9 goal-based sets of assertions. Each set of assertions was placed into a
standalone CSP script which could be run by FDR. This helped reduce the memory
profile for the following two reasons.

1. The memory used by one set of assertions could be freed once FDR had finished
evaluating them since the whole instance of FDR would terminate.

2. In order to reduce memory consumption and also verification time, it was pos-
sible to configure each set of assertions with suitable values for TimeSize, Data-
Size, SPIClkPerBit and UARTClkPerBit; in addition to the appropriate system con-
struction.

Running the 9 different sets of assertions in sequence took 10 minutes and 23
seconds. However, since the PC used had 8 identical 3.16 GHz Intel Xeon processors,
the evaluation script was changed to dispatch more than one set of assertions in
parallel. This is done with the condition that no more than R instances of FDR
could run at the same time. Setting R = 6 would consume at most 75% of the
available processing power. Under this configuration, the whole suite took 3 minutes
and 6 seconds where all 122 assertions were found to be true. This is an improvement
of 437 seconds or 70% over the sequential approach.

If FDR (latest release version 2.91, as of August 2012) did not always explicate the
left hand side process and explicated parts of the process when required instead, then
the refinement checks in Section 7.4 could have been possible for larger configurations
(TimeSize ≥ 4 and DataSize ≥ 2). This could have also been useful for the UART

protocol. Typical implementations of this protocol use either 8 or 16 data bits. The
evaluation in this chapter was limited to a maximum of 3.
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The verification of the configurable system was only possible through the identi-
fication of interesting constructions and their respective ISA-Oriented Specifications
and the subsequent verification of specific functional and performance properties of
such constructions. The correctness of the system with larger parameters is inferred
through the verification of such a system using more practical parameters.

7.11 Future Work

The performance specifications and their verification performed in Section 7.8 were
cycle accurate. The constructed throughput and latency specifications of the complex
channels were specified to the exact cycle. The throughput verification could be
adjusted to allow for a window of non-determinism.

Future work includes the addition and verification of such non-determinism for la-
tency and potentially other performance specifications. This would also facilitate the
performance verification of the constructed conformance channels where the different
specification styles are likely to introduce a small window of non-determinism.

Future work also includes the specification and verification of multiple tock do-
mains which would entail building processes by compiling different subprocesses using
different tock events. This should provide a great tool for the verification of systems
with multiple clock domains. For example, an SPI slave could use the clock generated
by the master process as its internal tock event, while the master uses explicit tock
events.

The identification of further functional and performance specifications and their
verification would provide an endless source of possible extensions to the framework
presented in this thesis.
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CHAPTER 8

Conclusions

8.1 Motivation and Chapter Structure

As the last chapter, this chapter presents the overall conclusions to the thesis. First,
Section 8.2 presents a brief summary to all previous chapters. Then, Section 8.3
discusses the overall contribution of the thesis. Possible future work is discussed in
Section 8.4. Finally, Section 8.5 presents the concluding notes and remarks.

8.2 Thesis Summary

To manage the inherent complexity of a configurable performance-critical communica-
tion system, a design and verification framework for such a system was demonstrated.
This was achieved through the separation of functional aspects into independent hard-
ware building blocks with clear interfaces and functions, which could be verified at
the block level.

Chapter 1 presented a brief introduction to the challenges faced by configurable
real-time communication systems, which inspired the inception of this thesis. The
chapter also summarised the challenges in the form of a problem statement and pre-
sented a brief background to the overall proposed modelling and verification frame-
work.

Chapter 2 presented a brief theoretical background and a structured analysis of
the requirements of configurable communication systems. The chapter focused on the
semantic and orthogonality analysis of common features of selected communication
protocols and aimed to establish an orthogonal set of requirements.
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Then, Chapter 3 presented the first attempt at modelling the proposed config-
urable communication system, along with its configurable blocks. A brief background
which highlights the different possible approaches for providing hardware configura-
bility was presented. Then the chosen specification and modelling language (CSP)
was briefly discussed. The chapter continued to present a Data and Control Multiplex-
ing approach for providing the needed configurability. It used a bidirectional pipeline
which multiplexed control tokens along with a universal data-type. The modelling of
the different configurable units was aided greatly with the visualisation of CSP pro-
cesses compiled into state machines and then automatically converted into graphic
form. These state machine visualisation techniques were also presented in Chapter 3.
Finally, Chapter 3 presented the metrics of the demonstrated models. The chapter
concluded with the need of complexity analysis techniques for hardware design and
model-checking.

Chapter 4 analysed the complexity of the model-checking technology through
analysing the complexity of the underlying state machine metrics. The chapter
demonstrated how such metrics could be transformed into complexity equations,
which could then be analysed in terms of their asymptotic behaviour with respect
to a specific configuration parameter. The chapter also addressed the possible fal-
lacy of making conclusions about the complexity of the formal models based on the
performance of the model-checking tool. The chapter demonstrated the use of the
proposed complexity analysis techniques in analysing the complexity of the data and
control multiplexing approach to configurability, which was discussed in Chapter 3.

Chapter 5 discussed the final modelled configurable communication system. First,
the evolution from a pipeline of control tokens to the final hierarchical control of the
functional blocks was discussed. Then, a formal specification of each modelled config-
urable unit was presented along with the ISA interface for configuring the functional
units and performing data I/O. The possible system constructions that meet the de-
mands of the modelled protocols were then discussed. The chapter then presented
the metrics of a basic system construction with respect to two different configuration
parameters along with a complexity analysis of those metrics. The chapter concluded
with a summary and possible future work.

Chapter 6 demonstrated ISA-Oriented Specification as a technique for configuring
the underlying formal system. ISA-Oriented Specification was also demonstrated as a
useful technique for providing functional and performance specifications of communi-
cation protocols. Chapter 6 also discussed the abstract specifications of communica-
tion protocols which are independent of the configurable system and its ISA interface.
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Those independent specifications are intended as reference models for checking the
conformity of the respective ISA-Oriented Specifications.

Finally, Chapter 7 discussed the verification of the modelled system through
model-checking. Basic functional and timing properties were first checked. The
specifications of the communication protocols discussed in Chapter 6 were verified
independently. Then, those specifications were verified at the system level through
the construction and functional verification of complex communication channels com-
posed of a transmitter and a receiver at the same abstraction level. Performance
aspects of different specifications of the protocols were verified through the verifica-
tion of the performance of the constructed complex channels. Chapter 7 also briefly
discussed and demonstrated the Tock-CSP Waveform Generator, which was instru-
mental in checking the functional and performance properties of the complex chan-
nels. Chapter 7 demonstrated an ad hoc approach to protocol conformity checking,
whereby abstract specifications of a protocol were verified with respect to an instance
configuration of the modelled configurable communication system. The conformity
checks that were carried out not only confirm protocol functional conformance, but
also its timing conformance.

8.3 Contributions

This section first outlines the overall contribution of this integrated modelling and
model-checking framework, then contributions of high academic interest are outlined
in Section 8.3.1 and finally the general contributions are highlighted in Section 8.3.2.
Those general contributions are considered to have high impact on knowledge trans-
fer and adoption challenges facing formal methods in general and model-checking
techniques in particular.

The individual aspects of analysis of communication protocols [23], hardware de-
composition into functional blocks [90], protocols standardisation and formal spec-
ification [24, 42], conformance checking of protocols [87] and timing requirements
validation [91] are techniques that have been studied individually for many years.

The novelty of the work presented in this thesis rests in the overall integrated
formal framework for the design and model-checking of functional and performance
specifications of communication systems and protocols. It contributes to the ever-
increasing interest in the verification of real-time communication systems.
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8.3.1 Academic Contributions

The model-checking complexity analysis techniques presented in Chapter 4 enabled
the complexity of CSP processes to be expressed in terms of configurable parameters,
data-types or state variables. The resulting complexity formulae can then be analysed
asymptotically, which gives great insight on how each analysed configuration param-
eter affects the overall complexity of such a process. These state machine complexity
analysis techniques are considered to be one of the major contributions of this thesis,
as they:

• help in the objective definition of the state-space explosion phenomena well-
known to model-checking techniques;

• enable subsequent optimisations to the associated formal models;

• provide an objective mechanism for assessing the dependence of a configurable
unit on a data-type, configuration parameter or shared variable; and

• help solve the scalability issues that typically hinder the application of model-
checking techniques and enable model-checkers to handle much larger specifica-
tions.

Such issues have been the focus of academic research for a number of years.
The ISA-Oriented Specification technique modelled in Chapter 5 and later demon-

strated in Chapters 6 and 7 for the modelling and verification of functional and
performance aspects of communication protocols represent an extendible and generic
formal modelling interface, which minimises the efforts and technical expertise needed
for producing detailed formal models. It uses the underlying configurable blocks for
the specification and verification of the protocols. This approach is seen as a sig-
nificant contribution in the use of CSP for the verification of large and complex
state-of-the-art communication systems.

8.3.2 General Contributions

The integration of performance modelling and model-checking in a general CSP frame-
work is a promising approach. This is achieved through the use of abstract tock-CSP
performance specifications and also ISA-Oriented Specifications for modelling perfor-
mance aspects of protocols. Then, by using the relevant refinement model including
the Tau Priority Model, performance checks can be carried out at an early stage of
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the design cycle. This provides verified and cycle-accurate performance specifications
of the system. The thesis demonstrates this integrated approach and is believed to
be the first project to use the newly released Tau Priority Model.

The complexity and grand scale of recent design problems, especially in multi-
core parallel systems with multiple clock domains highlight the importance of formal
design and verification and the automation of its tools. Though FDR proved useful for
designing systems and protocols in the past, it requires a good knowledge of CSP and
its theories. With the rising acceptance of formal methods in the industry, evidenced
by the increasing adaptation of such techniques for hardware design and verification,
there is a great opportunity for increasing the adaptation of CSP if the usability
gap is bridged. With the addition of the Tau Priority Model model it becomes
even more important to address the usability of CSP. The modelling visualisation
techniques depicted in the State Machine Visualiser, which was presented in Chapter 3
and the verification visualisation techniques depicted in the Tock-CSP Waveform
Generator, which was presented in Chapter 7 are seen as considerable contributions to
the usability and adoption challenges facing formal design and verification in general
and refinement-based model-checking in particular.

8.4 Future Work

Future work of the individual chapters has been discussed in detail in the respective
chapters. See Sections 4.9, 5.7, 6.7 and 7.11 for more details.

This section discusses overarching future work that transcends individual as-
pects. Such future work includes addressing the scalability issues of the suggested
model-checking framework. For example, in addition to complete complexity analysis
through the analysis of the full complexity semantics of CSP and the incorporation of
those semantics into a static complexity analyser, it would also be useful to perform
further performance and memory profiling and optimisation to the full model-checking
tool chain. This would help identify any other complexity issues to the refinement
algorithms and verification tools used.

In addition, a more scalable CSP model-checker, which benefits from the ever-
increasing parallelism existing in state-of-the-art computer systems is desirable. The
notion of employing a technological advancement in the development of the next
technological advancement is called bootstrapping. Such an approach has been used
in the development of computer architectures for many decades. The development
of model-checking algorithms and tools that take advantage of the recent trend of
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parallel computing is seen as an essential step in scaling the analysed systems after
exhausting all the scalability and optimisation options for the single-threaded model-
checker.

Future work that is more general would address implementation aspects of the
configurable hardware system. For example, the autogeneration of abstract state
machines, as opposed to the fully enumerated state machines presented in Section 3.5.
In addition, the investigation of a CSP to HDL interface similar to [76] and [78] which
would help integrate the modelling and specification framework discussed here to the
current hardware implementation technologies.

Finally, abstract waveforms could be automatically generated to act as blueprints
for a protocol specification or hardware implementation. An abstract waveform com-
piler could analyse a set of traces or CSP specifications and produce a set of abstract
waveforms, where some data values could be designated the value do not care. By
doing so, a single waveform could represent a large set of traces or a full CSP process.

8.5 Final Words

This thesis presents a modelling and model-checking framework for the specification
and verification of a complex configurable communication system. It examines many
aspects of the model-checking technology from scalability and complexity analysis
of the modelled system, the orthogonality of different building blocks with respect
to a specific function or data-type, scalability of the model-checker itself, the model-
checking algorithms used and the modelling and model-checking interfaces. The thesis
demonstrated that there are issues and problems to be solved and lessons to be learnt
in every examined aspect of the technology. For decades model-checking has been
seen as a push button technology [92]. By writing this thesis, the author hopes that
the work presented constitutes a step towards achieving that ultimate goal of a fully
automated modelling and model-checking framework for real-world complex systems.
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APPENDIX A

Visual Basic Macros using
Excel Solver

This chapter lists all the Visual Basic subroutines used to automatically analyse the
complexity of the CSP models. These subroutines have been used to generate the
results of the case study discussed in Chapter 4.

A.1 Sheet Solving Wrappers
’assumptions:
’first row in the sheet lists the values for the independent variable
’those variables are shared between initialisation and solving subroutine
Public F As Integer, P As Integer, D As Integer, S As Double, _

X As Double, tempCell As Range, StartedCollection As Boolean
Public Const n As Integer = 5
Public Const maxData As Integer = 10
Public Const FS As Integer = 2
Public Const SS As Integer = 12

’solves whole sheet using the iterative GRG subroutine
’and displays consumed time at the end
Sub MacroSolveGeneric()

Call MacroSolveGenericWrap(True, True)
End Sub

Sub MacroSolveGenericNoIterate()
Call MacroSolveGenericWrap(True, False)

End Sub

’solves whole sheet
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Sub MacroSolveGenericWrap(Time, Iterate)

Dim time1 As Double, time2 As Double
time1 = Timer

Dim TestString As String, TestArray() As String
Dim Row As Integer, Result As Integer

Row = 1

Result = getResultRow()

TestString = ActiveSheet.Cells(Row, 1).Text

While TestString <> "END"

If TestString = "" Then
GoTo LoopNext

End If

TestArray = Split(TestString)

If TestArray(0) = "Metric" Then
Call SolveMatrix(Row, 2, Result, Iterate)
Result = Result + 1

End If

LoopNext:
’ prepare for next iteration
Row = Row + 1
TestString = ActiveSheet.Cells(Row, 1).Text

Wend

EndSolving:
time2 = Timer
If Time = True Then

MsgBox "Time Taken " & Format(time2 - time1, "0.00 \s\ec")
End If

End Sub

A.2 Top-Level Solving Subroutine
Sub SolveMatrix(Row, Col, Result, Iterate)

Call InitMatrix(Row, Col, Result)
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If Iterate = True Then
Call RoundAndSolve

Else
Call SolveOnce(Range(Cells(F, FS), Cells(F, n + 1)))

End If

Call CollectFactors(Row, Col, Result)

End Sub

A.3 Initialisation Phase
Sub InitMatrix(Row, Col, Result)

’Row: measured (dependent) data row
’Col: measured data column
’Result: row where the results are to be collected
’P: predictions row
’D: difference row
’F: factors row
’X: independent variable row
’S: column number of SS cells

P = Row + 1
D = Row + 2
F = Row + 3
X = 1

Dim fCell(n) As Range

For I = 0 To (n - 1)
Set fCell(I) = ActiveSheet.Cells(F, Col + I)

Next

Dim xCell As Range
Dim formula As String

For I = 0 To (maxData - 1)

If LTrim(ActiveSheet.Cells(Row, I + FS).Text) = "" Then
GoTo FinishInit

End If

Set xCell = ActiveSheet.Cells(X, I + FS)

’initialise formulae
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formula = "=" & fCell(0).Address

For J = 1 To (n - 1)
formula = formula & "+" & fCell(J).Address & _

"*2^(" & xCell.Address & "*" & J & ")"
Next

ActiveSheet.Cells(P, Col + I) = formula

’initialise the error cells
ActiveSheet.Cells(D, Col + I) = _

"=(" & ActiveSheet.Cells(P, Col + I).Address & _
"-" & ActiveSheet.Cells(Row, Col + I).Address & ")^2"

Next

FinishInit:

’initialise all factors to 0
For I = 0 To n - 1

If RTrim(LTrim(ActiveSheet.Cells(F, Col + I).Text)) = "" Then
ActiveSheet.Cells(F, Col + I) = 0

End If
Next

’initialise the SS cell
ActiveSheet.Cells(D, SS) = _

"=sum(" & ActiveSheet.Cells(D, Col).Address & _
":" & ActiveSheet.Cells(D, Col + (maxData - 1)).Address & ")"

’initialise results area
Dim TestArray() As String
’ TestArray(2) is process name
’ TestArray(3) is metric name
TestArray = Split(ActiveSheet.Cells(Row, 1).Text)
ActiveSheet.Cells(Result, 1) = _

"Factors : " & TestArray(2) & " " & TestArray(3)

StartedCollection = False

End Sub

A.4 Standard GRG Subroutine
Sub SolveOnce(ChangeRange)

SolverReset
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SolverOptions MaxTime:=100,iterations:=1000,Precision:=0.000001, _
AssumeLinear:=False, StepThru:=False, Estimates:=1, _
Derivatives:=1, SearchOption:=1, IntTolerance:=5, _
Scaling:=False, Convergence:=0.0001, AssumeNonNeg:=False

SolverAdd CellRef:=Range(Cells(F, FS), Cells(F, n + 1)), _
Relation:=3, FormulaText:="0"

SolverOk SetCell:=Cells(D, SS), MaxMinVal:=2, ValueOf:="0", _
ByChange:=ChangeRange

SolverSolve True

End Sub

A.5 Modified Iterative GRG Subroutine
Sub RoundAndSolve()

Dim iToRound As Double

For c = n + (FS - 1) To FS Step -1

Call SolveOnce(Range(Cells(F, FS), Cells(F, c)))

iToRound = ActiveSheet.Cells(F, c).Value
Cells(F, c).Select
ActiveCell.FormulaR1C1 = Round(iToRound, 0)

Next c

End Sub

A.6 Results Collection for One Complexity Equation
Public Function getResultRow() As Integer

Dim Result As Integer
Result = 1
While ActiveSheet.Cells(Result, 1).Text <> "END"

’ prepare for next iteration
Result = Result + 1

Wend

Result = Result + 5

getResultRow = Result

End Function

Sub CollectFactors(Row, Col, Result)
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For c = n To 1 Step -1

cc = c + 1
Cells(F, cc).Select

If StartedCollection = False And _
ActiveSheet.Cells(F, cc).Value <> "0" Then

ActiveSheet.Cells(Result, cc).FormulaR1C1 = ActiveCell.FormulaR1C1
StartedCollection = True

Else
If StartedCollection = True Then

ActiveSheet.Cells(Result, cc).FormulaR1C1 = ActiveCell.FormulaR1C1
Else

ActiveSheet.Cells(Result, cc).FormulaR1C1 = ""
End If

End If
Next c

End Sub
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APPENDIX B

FDR Plugin (FDRlei)

B.1 Introduction and Background

Freitas and Woodcock [44] developed an extension to FDR called FDR Explorer,
which comes on the form of a set of TCL scripts. It provides useful insights on the
TCL interface of FDR and has an interesting set of methods including: Compilation,
Extraction, Helper and Auxiliary methods. These provide good knowledge about
internal FDR structures accessible through the TCL interface. Perhaps the most
interesting functionality of FDR Explorer is the graph visualisation function, which
uses JGraph [50]. However, attempts of using that visualisation function have failed
since it uses an old version of the JGraph library, which is no longer supported.

The initial motivation behind extending the capabilities of FDR through its TCL
interface was the need of better observability of the internal structures of processes
and their compositions. In particular, the analysis of the system complexity and how
each system component contributed to such complexity was of great interest.

The transitions function of the ISM object [18] provided some observability into
how a CSP process was compiled. Once the system grows and the number of transi-
tions grows over hundreds of transitions, examining the complexity of those processes
simply by analysing their transitions becomes infeasible.

Because examining the transitions of each system component at the command line
is tedious, an automated approach was desirable. Sequences of TCL commands were
collected into scripts to extract a transitions list of specific processes and perform
routine checks on those processes. The scripts also evolved into performing post pro-
cessing of the transitions lists, including a statistics collection, such as total number
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of states and transitions. This gave a quick indication about the complexity of the
individual processes, as well as the overall system. It also gave an indication of how
each individual process or state variable affected such complexity. However, the more
processing and functionality that was added to those TCL scripts, the slower they be-
came. It was apparent at that stage that the TCL scripting approach is not effective
in evaluating larger processes with millions of states and transitions. This gave rise
to a more efficient approach of having a standalone application for post processing of
the information extracted from FDR using the TCL interface. This application was
called FDRlei. As more functionality was shifted from the TCL scripts to this stan-
dalone application, the TCL script interface evolved into a Middleware. It worked
only as a mediator, extracting information from an FDR server and forwarding it to
FDRlei, as depicted in Figure B.1.

Proprietary of Framework

State2
FDR C++ Server

FDRlei
C++ Analysis and 

Visualisation
Plug-in

fdr2tix
FDR TCL
Interpreter

GTKWave
Tock-CSP 
Waveform 
Inspection

FDR 2.91 Academic Release (enhanced)

FDRware
Middleware
TCL script

Plug-in

Figure B.1 Structure of the FDRlei Plugin

The structure depicted in Figure B.1 enabled the offloading of almost all processing
functions to the FDRlei C++ application.

This C++ plugin approach was taken, since it proved more effective in analysing
and manipulating large data sets, as opposed to performing the same analysis using
TCL. By benchmarking seven programming and scripting languages, Prechelt [63]
shows that C++ consistently outperforms TCL in terms of runtime and memory
consumption, both of which are valuable resources in a model-checking platform.
This trade-off becomes more apparent when handling large data sets. The analysis of
large data sets was instrumental to the complexity analysis of large CSP processes.

The implementation approach of FDRlei was to mirror the needed Classes and
Objects in the FDR server and augment them with the needed functionality. Addi-
tionally, a Class was needed to handle the bidirectional flow of information between
FDRlei and external applications such as the FDR server. This Class was called
Stream. Refer to Figure B.2 for more information about the object model of FDRlei.
Only the objects and functions in FDR that were relevant to FDRlei were imple-
mented. Those helped in importing the desired structures and information from
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FDR. They were then augmented with additional objects and functions to provide
for the extra analysis and observability.

B.2 Object-Oriented API

The functional interface of the object model in Figure B.2 is discussed in the following
sections. This interface is only made available through the external interface of the
FDRlei plugin, represented by the FDRlei object which is discussed in Section B.2.8.
A brief description of selected objects and functions that are implemented in FDRlei
follows.

B.2.1 Stream

This object encapsulates a socket to an external application. It keeps information
about the file descriptors for input, output, and error. It has the ability to forward
commands to the attached application and, if necessary, collect the response for those
commands. It can also be configured to collect error messages. The provided functions
are listed below.

• Execute (command) ⇒ response: takes a single parameter which is the com-
mand to send to the attached application. It reads back the response from the
application and returns this response.

• Execute (command, expect) ⇒ result : can be used if the calling object expects
a specific response, but does not need to perform any processing on such a re-
sponse. The returned boolean value specifies whether the application responded
as expected or not.

• Execute (command): can be used if no response at all is expected from executing
the command. It is a low-level function and it only sends the command on the
output channel attached to the application. The calling object is either not
expecting any response back, or needs to manually access the input channel
and parse the response one token at a time.

• Exit : terminates the external application by sending an exit command.
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Figure B.2 UML Representation of the Object Model of FDRlei
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B.2.2 Transition

An object that encapsulates a single transition of the state machine. It holds infor-
mation about the starting state, the event involved, and the end state. An ISM can
then be represented by a list of Transition objects. This is an abstract data-type with
no executable functions.

B.2.3 Event

An object that holds information about a specific event that can be executed by a
CSP process. The held information includes the alphabetical event name and the
corresponding enumerated event number. It was also extended to hold the symbolic
representation of the event, as well as the size of the associated data-type. This addi-
tional information was needed for the generation of a waveform abstraction of a failing
trace on the form of a Verilog [85] VCD file, as discussed earlier in Section 7.8.1.1.
Only one function is associated with this object.

• GetDataValue ⇒ data: checks whether or not the event represented by this
object is a compound event of the form c.t | t ∈ TY , where TY is the type of
channel c. This function returns the value t associated with this specific event.

The GetDataValue function was useful in dynamically determining the type of
each event involved in a failing trace, by analysing the failing trace itself and without
access to the CSP source script. This analysis allows for a quick conversion of the
failing trace to the desired VCD representation, which can then be examined using a
waveform viewer, such as GTKWave. Also, CSP allows for a Cartesian generalisation
of the “dot” separator for sets. For example, c. S .E .T = c.s.e.t|s ∈ S∧e ∈ E∧t ∈ T.
At the time of writing, only the simple case of X .t | t ∈ T is implemented where X

can be any channel type, including compound ones.

B.2.4 Waveform

This object is similar to the Behaviour object of FDR. It encapsulates the behaviour
of a single process and the events list associated with a trace that the process executes
or contributes to an overall execution trace. The added functions were used to collect
additional information about the executed trace. This additional information was
instrumental in translating the trace into a VCD waveform.
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• DisplayWave (fileName, active) ⇒ gtkStream: is used to convert the execution
trace contained by this node into VCD format, which is then saved into the file
name specified by the first parameter. After the wave generation is complete,
this function will attempt to invoke the GTKWave application to display the
generated waveform. The second parameter specifies whether or not future
interaction with GTKWave is required. If so, a Stream object is constructed to
keep an I/O socket for interaction with GTKWave. This Stream object is then
returned by the DisplayWave function.

• UpdateWave (fileName, gtkStream) ⇒ status : if FDRlei was invoked in interac-
tive mode, then GTKWave will also be invoked in interactive mode. This means
that interaction with GTKWave will be through its TCL interface. The reader
is referred to the User Guide of GTKWave [84] for more information about its
TCL interface. This function is called once a new trace has been interactively
identified, which can be done either by changing the displayed process name
or the failing trace number. The first parameter to this function is the VCD
file, and the second parameter is a reference to the Stream object obtained by
an earlier call to DisplayWave. Finally, the function returns the status of the
update.

• GenerateWave ⇒ status : is called by both DisplayWave and UpdateWave. If
the generation process succeeds then the VCD file is saved.

• GenerateHeader : generates the header section of the VCD file, including date,
time, tool version and timescale.

• GenerateScopes : generates the scopes section of the VCD file. At the time of
writing, only a top-level scope was supported, which represents the top-level
process under scrutiny.

• GenerateWires ⇒ status : generates a symbolic name for each event and stores
it in a structure called eventTypes held by the Graph object. It also finds the
type of each event (in case of compound events) and its size. Then it generates
a single VCD variable of type wire for each event that appears in the trace.
Timing events (tocks) are essential to generating VCD waveforms and if none
are found an error message is displayed and the function fails.

• GenerateTrace: converts the trace information into the VCD format. It is
assumed that the clock frequency is 1GHz and a tock event would start the
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cycle with the associated tock signal being high. Then all events in the trace
are generated so that the value of simple events is assumed to be high at the
start of the clock cycle and all compound events have their exact value changed,
as specified by the trace. Then at the halfway point of the clock cycle (500ps)
the tock is changed to low along with all simple events. Finally, the time is
advanced another 500ps to finish the cycle. The process continues until there
are no more events in the trace.

B.2.5 Tree

This object is similar to the DebugTree object of FDR. It encapsulates the top-level
of an execution trace as a root Waveform object. In addition, it includes information
about all the subprocesses that the top-level process is constructed from and their
contribution to the top-level trace. Available functions are:

• Create (stream, spec, imp, witness)⇒ tree: is used to create the tree by running
the refinement relation spec v imp. If the refinement relation succeeds, then
the function fails to produce any traces and subsequently the tree creation
fails. If the assertion result is either xtrue or xfalse then, using the associated
DebugContext and DebugTree objects of FDR, a Tree object is constructed.

• Create (witness) ⇒ tree: can be executed using an existing DebugTree object
when the trace refinement has already been checked by an earlier call to the
Create(stream, spec, imp, witness) function. It is used for exploring a different
witness trace in interactive mode. It is similar to the Create(stream, spec, imp,
witness) function, except that it uses the DebugContext already saved and does
not run the refinement assertion again.

• FindNode (process)⇒ node: takes a process name as a string and finds the node
in the current tree that corresponds to that process. It does so by recursively
traversing the tree and once a node has been identified, that node is returned.

B.2.6 Graph

This object imports many aspects and functions from the ISM object in FDR. It also
adds functions that are useful to the development of the overall framework. Selected
functions are briefly discussed here, but are also further discussed in Section 3.5.
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• EventNumber (name) ⇒ number : returns the numerical event number when
given the alphabetical event name.

• EventName (number) ⇒ name: returns the alphabetical name of the event
when given the numerical value of that event. This function is useful when
translating state machines and trace information into different visual formats.

• ShowGraph ⇒ pdfGraph: automatically transforms the transitions list into
graphical form through the use of the Dot language and the associated lay-
out and automatic rendering tools, described by Gansner and North in [48] and
also by Koutsofios and North in [49]. FDRlei generates a Dot file formatted ac-
cording to the Dot language specification. Then by using the associated toolkit,
the Dot file is transformed into a PDF file. Section 3.5 provides more details
about this function.

• ShowStats : prints statistical information about the process. Those statistics
include the total number of states, transitions and unique events. The events
count includes all possible communications along a compound channel. This
function was useful for iteratively analysing the complexity of CSP processes,
as discussed in Chapter 4.

B.2.7 SessionLei

As the name implies, this object is used for accessing the corresponding Session object
in FDR. In addition, a top-level interface to the waveform generation mechanism, as
well as the interactive interface with GTKWave was implemented into this object.
For brevity, this object is not shown in Figure B.2.

• ShowWaveform(spec, imp, process, witness, active)⇒ vcdWave: takes a specifi-
cation process and an implementation process to be checked for refinement. By
default it performs the refinement check under the Tau Priority Model. Then,
using the provided process name and witness number, the function identifies
a Waveform object in the debug tree from which a trace is obtained. Finally,
using the DisplayWave function of the identified Waveform object, the trace
is converted into the VCD format and subsequently displayed for inspection
using GTKWave. The function also has the ability to run in interactive mode,
in which case the function waits for further input identifying another trace.
This could be done using a process name or a witness number. GTKWave is
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automatically updated using the UpdateWave function of the Waveform object
described earlier in Section B.2.4.

B.2.8 FDRlei

This is the top-level object, which provides the command line interface with a num-
ber of commands and optional arguments. Those commands wrap and sometimes
combine functions in the object model described so far. It first parses the command
line arguments and then a main switch selects from a set of possible responses.

• ParseArguments(argumentCount, argumentList): expects at least three argu-
ments: the CSP script file name, the command to execute, and a process list
on the form of ”{P1, P2, P3, . . .}”. See the SwitchCommand function below for
more information on the possible commands. This object supports a number of
optional arguments.

– v : is used to configure the verbosity of the associated FDR server. It is
also used by FDRlei to control the amount of reporting generated. Possible
values for -v are: “auto”, “none”, “medium” and “full”.

– f : is used to specify the output file name. This is only useful if the
command was graph or VCD. In the case of the graph command, the
provided name would be used for the PDF file. In the case of the vcd
command, the provided name is used for the VCD file.

– i : specifies interactive mode. At the time of writing, interactive mode was
only supported for the vcd command.

– w : is used to specify the witness number for VCD debugging. It should be
followed by a numeric value between 0 and 99. If this option is missing,
the witness number is assumed to be 0.

– m: specifies the refinement model to be used in the compilation of processes
and the execution of any assertions.

• SwitchCommand(command) ⇒ status : is the top-level switch. The following
commands are implemented.

– stats : each process in the process list is compiled and formatted, then the
statistics of each process are displayed.
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– graph: each process is compiled and the graph representing the state ma-
chine of each process is generated and displayed.

– graph tau priority : similar to the graph command, except that each pro-
cess is compiled using the Tau Priority Model. Then the state machine for
each process is generated and displayed.

– vcd : assumes that a refinement check is to be carried out, the first process
in the process list is the specification process, the second is the implementa-
tion process, and the third process (if it exists) is assumed to be a process
in the tree of the implementation process to be used for debugging. If
a third process was not provided, then the debugged process will be the
root process (i.e. the implementation process itself). Finally, the control is
passed to the ShowWaveform function of the SessionLei object, using the
relevant parameters.

The object model is presented here as proof of concept of the functions that were
essential in the development of the configurable communication system discussed
in this thesis. By providing a detailed documentation of FDRlei, it is hoped that
the contribution of this tool to the overall framework is highlighted. Future work
would possibly include the integration of those objects and functions into the FDR
object model. Alternatively, the FDRlei plugin could be further developed into an
independent tool for the debugging, analysis and visualisation of formal models and
state machines.
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